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ABSTRACT

We use the halo model of clustering to compute two- and three-point correlation func-
tions for weak lensing, and apply them in a new statistical technique to measure properties of
massive halos. We present analytical results on the eight shear three-point correlation func-
tions constructed using combination of the two shear components at each vertex of a triangle.
We compare the amplitude and configuration dependence of thefunctions with ray-tracing
simulations and find excellent agreement for different scales and models. These results are
promising, since shear statistics are easier to measure than the convergence. In addition, the
symmetry properties of the shear three-point functions provide a new and precise way of
disentangling the lensingE-mode from theB-mode due to possible systematic errors.

We develop an approach based on correlation functions to measure the properties of
galaxy-group and cluster halos from lensing surveys. Shearcorrelations on small scales arise
from the lensing matter within halos of massM >

∼ 10
13

M⊙. Thus, the measurement of two-
and three-point correlations can be used to extract information on halo density profiles, pri-
marily the inner slope and halo concentration. We demonstrate the feasibility of such an anal-
ysis for forthcoming surveys. We include covariances in thecorrelation functions due to sam-
ple variance and intrinsic ellipticity noise to show that 10% accuracy on profile parameters
is achievable with surveys like the CFHT Legacy survey, and significantly better with future
surveys. Our statistical approach is complementary to the standard approach of identifying in-
dividual objects in survey data and measuring their properties. It can be extended to perform
a combined analysis of the large-scale, perturbative regime down to small, sub-arcminute
scales, to obtain consistent measurements of cosmologicalparameters and halo properties.

Key words: cosmology: theory — gravitational lensing — large-scale structure of universe

1 INTRODUCTION

The gravitational lensing of distant galaxy images due to large-scale structure, known as cosmic shear, has been well established as a
cosmological probe (e.g, Mellier 1999, Bartelmann & Schneider 2001 and Wittman 2002 for reviews). Many independent groups have
reported significant detections of two-point shear correlations, providing constraints on the mass density of the universe (Ωm0) and the mass
power spectrum amplitude (σ8) (e.g., Van Waerbeke et al. 2001b; Bacon et al. 2002; Refregier, Rhodes & Groth 2002; Hoekstra et al. 2002;
Brown et al. 2002; Hamana et al. 2002; Jarvis et al. 2003). Non-linear gravitational clustering substantially enhancesthe cosmic shear signal
on angular scales<∼ 10′ (Jain & Seljak 1997). An accurate description of non-lineareffects on shear correlations is important to interpret
the measurements.

The most effective way of studying non-linear structure formation has beenN -body simulations, which are accurate on scales larger than
the numerical resolution limit, since the relevant physicsis only gravity on scales of interest. However, current survey data require accurate
models of large-scale structure over a huge dynamic range oflength scales. A simulation needs to sample cosmological scale(∼ 100Mpc)
in order to have a fair sample. On the other hand, lensing statistics at relevant angular scales are affected by highly non-linear structures, dark
matter halos with a size<∼ Mpc, and structure that needs to be resolved down to scales approaching0.01Mpc. The required dynamic range is
prohibitive for current computational resources. In addition, to perform multiple evaluations in model parameter space requires thousands of
simulations runs, which is also prohibitive. While some numerical short-cuts can be used to get around these constraints, having an accurate
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2 M. Takada & B. Jain

analytic model would be a valuable complementary, and sometimes essential, tool. It could also provide physical insights into the complex
non-linear phenomena involved in gravitational clustering.

The dark matter halo model of clustering fulfills such a niche. The method was first constructed in real space to understandthe correlation
functions of the galaxy distribution in terms of halos (Neyman & Scott 1952; Peebles 1974; McClelland & Silk 1977; Scherrer & Bertschinger
1991; Sheth & Jain 1997; Yano & Gouda 1999; Ma & Fry 2000a,b; Sheth et al. 2001; Berlind & Weinberg 2002; Takada & Jain 2003b,
hereafter TJ03b). The model was also formulated in Fourier space, since this leads to simpler expressions for the Fourier-transformed
counterparts of the higher-order moments (Seljak 2000; Peacock & Smith 2000; Ma & Fry 2000c; Scoccimarro et al. 2001; Cooray & Hu
2001a,b; Takada & Jain 2002 hereafter TJ02; also see Cooray &Sheth 2002 for a review). Given the model ingredients: the halo density
profile, mass function and bias, each of which has been well investigated in the literature, the halo model can be used to compute the statistics
of cosmic fields. There are several advantages in using the halo model. First, it allows us to easily implement multiple model predictions
in parameter space. Second, the measured signals are explicitly understood in terms of the halo model ingredients. Thiswill be relevant for
the comparison with other observations such as theX-ray or the Sunyaev-Zel’dovich (SZ) effect for clusters of galaxies. Third, the model
accuracy can be easily refined by incorporating results fromN -body simulations with higher resolution. Interestingly,so far the halo model
has led to consistent predictions to interpret observational results of galaxy clustering as well as reproduce simulation results (e.g., Seljak
2000; Ma & Fry 2000c; Scoccimarro et al. 2001; TJ02; Guzik & Seljak 2002; Sheth et 2001; Takada & Jain 2003a hereafter TJ03a; TJ03b;
Zehavi et al. 2003).

Recently, we have extended the halo approach to analytically compute the real-space three-point correlation functions (3PCF) of the
mass, galaxies and weak lensing fields with reasonable computational expense (TJ03b). The 3PCF is the lowest-order statistical quantity to
probe non-Gaussianity, generated by non-linear structureformation from primordial Gaussian fluctuations. It also allows one to explore the
shapes of clustered mass distributions via its configuration dependence, which is not contained in the two-point correlation function (2PCF).
Hence, measurements of the 3PCF can provide additional cosmological information. Our recent work described above and this paper provide
the methods and formalism to compute the real space 3PCF. On large scales, the real space 3PCF provides no advantage over the well studied
bispectrum. On small scales, however, it is easier to measure the 3PCF in real space because the bispectrum requires taking the Fourier
transform of survey data, which typically involves dealingwith the complex survey geometry (e.g. in lensing surveys there are several areas
that are masked out due to bright stars, and thus the transform is likely noisy). In addition, the different wavenumber modes are highly
correlated with each other on small scales, and thus one merit of working in Fourier space is lost (in contrast to the CMB, where nonlinearties
are minimal on scales of interest). Indeed so far most measurements of the 2PCF have also been in real-space for cosmic shear (though Pen,
Van Waerbeke & Mellier 2002; Brown et al. 2002; Pen et al. 2003have estimated the shear power spectrum as well).

In lensing surveys, the 3PCF of the shear is easier to measurethan the 3PCF of the convergence field which requires a non-local
reconstruction from the data (Bernardeau, Van Waerbeke & Mellier 2003). An exciting recent development has been the detection of statistical
measures based on the shear 3PCF from the Virmos-Descart Survey (Bernardeau, Mellier & Van Waerbeke 2002; Pen et al. 2003). Theoretical
study of the shear 3PCF has just begun: Schneider & Lombardi (2003, hereafter SL03) and Zaldarriaga & Scoccimarro (2003,hereafter ZS03)
analyzed how to construct the eight shear 3PCFs from combinations of the+/× shear components at each vertex of a given triangle. Using
the ray-tracing simulations, in TJ03a we verified that the eight shear 3PCFs display characteristic configuration dependences, and pointed
out that the characteristics can be used to separate the lensing E-mode from the measured signals that are generally contaminated by the
B-mode due to systematic errors and other effects.

The purpose of this paper is to develop an accurate, analyticmodel to predict the 3PCFs of the shear field, extending the halo model for
the convergence field (TJ03b). We will carefully examine theaccuracy of the model predictions by comparing with ray-tracing simulations.
In particular, we will focus on whether or not the halo model can reproduce the complex configuration dependences seen in the simulations,
since the halo model relies on simplified assumptions of spherical halos.

We develop a new application of higher order shear correlations to measure the properties of massive halos. These are relevant for
upcoming surveys such as the CFHT Legacy Survey1 and the Deep Lens Survey2 and proposed projects such as DML/LSST3, Pan-STARRS4

and SNAP5. These surveys promise to measuren-point correlation functions of the cosmic shear fields evenon sub-arcminutes scales with
high significance. Therefore, with the halo model, these small-scale signals can be used to probe properties of the halo density profile such as
its inner slope and concentration. We will work with a generalized universal profile for halos (Navarro, Frenk & White 1996; 1997, hereafter
NFW). These properties remain uncertain theoretically as well as observationally. To implement this approach, we willdevelop a method
to compute the covariance for the 2PCF and 3PCF measurements, extending the method of Schneider et al. (2002b). We will estimate the
accuracy with which forthcoming surveys can constrain haloprofile parameters from combined measurements of the 2PCF and 3PCF.

The plan of this paper is as follows. In§2, we develop the real-space halo approach for computing thetwo- and three-point correlation
functions of the lensing convergence and shear fields. In§3, we summarize the triangle configuration dependences of the shear 3PCFs. In§4,
we compare the halo model predictions with ray-tracing simulation results. Then, in§5, we show how measurements of the 2PCF and 3PCF
on sub-arcminute scales are feasible for ongoing and futurelensing surveys, taking into account statistical sources of error. We then address
how these small-scale measurements can be used to constrainhalo profile properties.§6 is devoted to a summary and discussion. We will
consider mainly two cosmological models. One is theΛCDM model withΩm0 = 0.3, Ωλ0 = 0.7, Ωb0, h = 0.7 andσ8 = 0.9. The other

1 www.cfht.hawaii.edu/Science/CFHLS/
2 dls.bell-labs.com/
3 www.dmtelescope.org/dark home.html
4 www.ifa.hawaii.edu/pan-starrs/
5 snap.lbl.gov
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Three-Point Correlations in Lensing 3

is the SCDM model withΩm0 = 1.0, h = 0.5 andσ8 = 0.6. HereΩm0, Ωb0 andΩλ0 are the present-day density parameters of matter,
baryons and the cosmological constant,h is the Hubble parameter, andσ8 is the rms mass fluctuation in a sphere of radius8h−1Mpc.

2 FORMALISM: REAL-SPACE HALO APPROACH TO COSMIC SHEAR STATI STICS

In this section we develop an analytic method for calculating the 3PCFs of shear fields by extending the real-space halo approach developed
in TJ03b.

2.1 Convergence and shear fields

Weak gravitational lensing can be separated into two effects: magnification (described by the convergence) and shear (e.g., Bartelmann &
Schneider 2001).

The lensing convergence field is a scalar quantity and simplyexpressed as a weighted projection of the density fluctuation field between
source galaxy and observer:

κ(θ) =
1

2
∇2Ψ(θ) =

∫ χH

0

dχW (χ)δ[χ, dA(χ)θ], (1)

where we have introduced the two-dimensional lensing potential Ψ, the Laplacian operator∇2 defined as∇2 ≡ ∂2/∂θi∂θi, χ is the
comoving distance, andχH is the distance to the horizon. Note thatχ is related to redshiftz via the relationdχ = dz/H(z), whereH(z)
is the Hubble parameter at epochz. Following the early work of Blandford et al. (1991), Miralda-Escude (1991) and Kaiser (1992), we used
two key simplifications to derive the equation above; the flat-sky approximation, which is valid on angular scales of interest, and the Born
approximation, where the convergence field is computed along the unperturbed path. Using ray-tracing simulations, Jain et al. (2000) showed
that the Born approximation is an excellent approximation for the two-point statistics. We will assume that it also holds for the higher-order
statistics we are interested in. The functionW is the lensing projection defined by

W (χ) =
3

2
Ωm0H

2
0a

−1(χ)dA(χ)

∫ χH

0

dχs ns(χs)
dA(χs − χ)

dA(χs)
, (2)

wherens(χs) is the redshift selection function of source galaxies. HereH0 is the Hubble constant (H0 = 100h km s−1Mpc−1) and
dA(χ) is the comoving angular diameter distance. In this paper we assume all source galaxies are at a single redshiftzs for simplicity;
ns(χ) = δD(χ− χs). Note thatdA = χ for a flat universe.

A more direct observable of weak lensing is the shearing of images of source galaxies. Since this effect is of order 1% for large-scale
structures lensing in a CDM model, it is measurable only in a statistical sense. The shear field is described by the two components,γ1 and
γ2, which correspond to elongation or compressions along the x-axis, or at45◦ to it, respectively (given Cartesian coordinates on the sky).
The shear field is expressed in terms of the lensing potentialas

γ1 =
1

2
(Ψ,11 − Ψ,22), γ2 = Ψ,12, (3)

whereΨ,ij ≡ ∂2Ψ/∂θi∂θj . In Fourier space, these fields are simply related to the convergence field via the relation

γ̃1(l) = κ̃(l) cos(2ϕl), γ̃2(l) = κ̃(l) sin(2ϕl), (4)

wherel = l(cosϕl, sinϕl) and, in the following, quantities with tilde symbol denote Fourier components. Equation (4) shows thatγi

behaves like a spin-2 field: if at a given point one rotates thecoordinate system by an angleα in the anti-clockwise direction, the shear fields
are transformed as

γ′
1 = cos 2α γ1 + sin 2α γ2,

γ′
2 = − sin 2α γ1 + cos 2α γ2. (5)

We will often use the vector notationγ = γ1 + iγ2. A general two-dimensional spin-2 field can be decomposed into anE-mode derivable
from a scalar potential and a pseudo-scalarB-mode (Kamionkowski, Kosowski & Stebbins 1997; Zaldarriaga & Seljak 1997; Hu & White
1997 for the CMB polarization and Stebbins 1996; Kamionkowski et al. 1998; Crittenden et al. 2002; Schneider et al. 2002afor the cosmic
shear). Gravitational lensing induces a pureE-mode in the weak lensing regime, while source galaxy clustering, intrinsic alignments and
observational systematics induce bothE andB-modes in general (Crittenden et al. 2002; Schneider et al. 2002a). The clean separation of
E/B modes from survey data is of great importance in extracting cosmological information.

2.2 Halo mass function and halo bias

To develop the halo model, we begin by describing models of the mass function and the halo bias that are used in this paper.
Following TJ02 and TJ03b, we employ an analytical fitting formula proposed by Sheth & Tormen (1999), which is more accurate than

c© 0000 RAS, MNRAS000, 1–31



4 M. Takada & B. Jain

the original Press-Schechter mass function (Press & Schechter 1974). The number density of halos with mass in the range betweenM and
M + dM is given by

n(M)dM =
ρ̄0

M
f(ν)dν

=
ρ̄0

M
A[1 + (aν)−p]

√
aν exp

(

−aν
2

)

dν

ν
, (6)

whereν is the peak height defined by

ν =

[

δc(z)

D(z)σ(M)

]2

. (7)

Hereσ(M) is the present-day rms fluctuation in the mass density, smoothed with a top-hat filter of radiusRM ≡ (3M/4πρ̄0)
1/3, δc is the

threshold overdensity for the spherical collapse model (see Nakamura & Suto 1997 and Henry 2000 for a useful fitting function) andD(z)
is the growth factor (e.g., Peebles 1980). The numerical coefficientsa andp are empirically fitted fromN -body simulations asa = 0.75
andp = 0.3. Note that the value ofa is modified from thea = 0.707 in Sheth & Tormen (1999) to better fit the mass function at cluster
mass scales in the Hubble volume simulations (R. Sheth; private communication). The coefficientA is set by the normalization condition
∫ ∞

0
dνf(ν) = 1, leading toA = 0.129. This condition reflects the assumption that all the matter is in halos. Note that the peak hightν is

specified as a function ofM at all redshifts once the cosmological model is fixed.
Recently, various authors (e.g., Jenkins et al. 2001; White2002; Hu & Kravtsov 2003) have addressed the non-trivial problem of how the

mass function seen in the simulations depends on the halo identification scheme and the mass estimator. There is no clear boundary between a
halo and the surrounding large-scale structure, thereforethe halo mass does depend on the algorithm used (e.g., the friend-of-friend method or
the spherical overdensity method). Jenkins et al. (2001) showed that if one employs the halo mass estimator,M180, enclosed within a sphere
of radiusr180 (interior to which the mean density is180 times the background density), the mass function measured from the simulation
can be well fitted by the universal form of equation (6). This conclusion was also verified by White (2002; also see Hu & Kravtsov 2003).
Despite these facts, in this paper we employ the virial halo mass to describe the mass function for simplicity, since it isbased on the more
physically-motivated spherical collapse model that can beapplied to any cosmology, irrespective of the halo density profile:

M =
4π

3
ρ̄0∆v(z)r3vir, (8)

whereρ̄0 is the present-day mean density of matter,rvir is the virial radius, and∆v(z) is the overdensity of collapse given as a function
of redshift (e.g., see Nakamura & Suto 1997 and Henry 2000 fora useful fitting formula). One justification of our treatmentis the result
of Figure 5 in White (2002), which showed that the form of equation (6) fits the simulations when the virial mass estimator is employed
(although the agreement is not as good as the case forM180). The difference in the halo model predictions for lensing statistics due to the two
definitions is small, as will be shown in Figure A4. Finally, it is worth pointing out the advantage of the mass function of equation (6) over
that of Jenkins et al. (2001): it is well behaved over the fullrange of mass and satisfies the normalization condition

∫ ∞

0
dνf(ν) = 1, while

the mass function of Jenkins et al. (2001) cannot be safely extrapolated outside of the range of their fit and does not satisfy the normalization
condition.

Mo & White (1996) developed a useful formula to describe the bias relation between the halo distribution and the underlying mass
distribution. This idea has been improved by several authors usingN -body simulations (Mo, Jing & White 1997; Jing 1998; Sheth &
Lemson 1999; Sheth & Tormen 1999); we will use the fitting formula of Sheth & Tormen (1999) for consistency with the mass function (6):

b(ν) = 1 +
aν − 1

δc
+

2p

δc(1 + (aν)p)
, (9)

where we have assumed scale-independent bias and neglectedthe higher order bias functions(b2, b3, · · ·). This bias model is used for
calculations of the 2-halo term in the 2PCF and the 2- and 3-halo terms of the 3PCF. It is not important at the small, non-linear scales where
the 1-halo term arising from correlations within a single halo provides the dominant contribution.

2.3 Convergence and shear profiles for an NFW halo

In this subsection, we derive useful, analytical expressions for the convergence and shear profiles around an NFW halo, which is the most
essential ingredient for small scales.

We consider halo density profiles given by the form

ρh(r) =
ρs

(cr/rvir)α(1 + cr/rvir)3−α
, (10)

whereρs is the central density parameter andc is the concentration parameter. It is used instead of the scale radiusrs = rvir/c which is the
transition radius betweenρh ∝ r−α andr−3. For most of the paper, we will use the NFW profile withα = 1. However, since simulations
with higher spatial resolution have indicatedα ≈ −1.5 (Fukushige & Makino 1997; Moore et al. 1998; Jing & Suto 2000;Ghigna et al.
2000), we will also consider the effect of variations inα for lensing statistics. Given the halo profile, the parameter ρs can be eliminated from
the definition of the virial mass:

M =

∫ rvir

0

4πr2drρh(r) =
4πρsr

3
vir

c3

{

f−1, (NFW;α = 1),
c3−α

3 − α
2F1(3 − α, 3 − α, 4 − α,−c), (otherwise),

(11)

c© 0000 RAS, MNRAS000, 1–31
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ϕθ

θ

background galaxy

E−mode

Dark Matter Halo

Figure 1. Illustration of the shear pattern around an axially-symmetric halo. A background galaxy image is tangentially deformed with respect to the halo
center, corresponding to a pureE mode in the shear field.

wheref = 1/[ln(1 + c)− c/(1 + c)] and2F1 denotes the hypergeometric function. Note that equation (8) gives the virial radius is given in
terms of the halo massM and redshiftz.

To express the halo profile in terms ofM andz, we further need the dependence of the concentration parameterc onM andz; however,
this still remains somewhat uncertain. Following TJ02 and TJ03b we use

c(M, z) = c0(1 + z)−1

(

M

M∗(z = 0)

)−β

, (12)

whereM∗(z = 0) is the nonlinear mass scale at present defined byδc(z = 0) = σ(M∗). The redshift dependence(1+z)−1 and our fiducial
choice of(c0, β) = (9, 0.13) are based on the numerical simulation results in Bullock et al. (2001).

For an NFW profile stated above, we can derive an analytical expression for the the convergence field. As we discussed in TJ03b, the
halo profile is taken to be truncated at the virial radius in order to maintain mass conservation given by the normalization of the mass function.
Hence, the convergence field for a halo of massM can be defined as

κM (θ) = 4πGa−1 dA(χ)dA(χs − χ)

dA(χs)
ΣM (θ) (13)

whereΣM is the projected density field defined by:

ΣM (θ) ≡
∫ rvir

−rvir

dr‖ρM (r‖, dAθ) =
Mfc2

2πr2vir

F (cθ/θvir). (14)

The explicit form forF (x) is given by equation (27) in TJ03b.
For an axially-symmetric mass distribution, the shear amplitude can be expressed in terms of the convergence field as a function of the

radius from the halo center (e.g., Miralda-Escude 1991):

γM (θ) = κ̄M (θ) − κM (θ), (15)

whereκ̄M is the mean surface mass density inside a circle of radiusθ: κ̄M = (1/πθ2)
∫ θ

0
2πθ′dθ′ κM (θ′). The equation above reflects the

non-local nature of the shear field, since it is induced by non-local tidal forces. The shear field does not vanish outside the projected virial
region becausēκM is non-zero, even ifκM (θ) = 0. From equation (13), the shear profile for an NFW halo of massM can be analytically
expressed as

γM (θ) = 4πGa−1 dA(χ)dA(χs − χ)

dA(χs)

Mfc2

2πr2vir

G(cθ/θvir), (16)

with

G(x) =











































1

x2(1 + c)

[

(2 − x2)
√
c2 − x2

1 − x2
− 2c

]

+
2

x2
ln

x(1 + c)

c+
√
c2 − x2

+
2 − 3x2

x2(1 − x2)3/2
arccosh

x2 + c

x(1 + c)
, (x < 1)

1

3(1 + c)

[

(11c+ 10)
√
c2 − 1

1 + c
− 6c

]

+ 2 ln
1 + c

c+
√
c2 − 1

, (x = 1)

1

x2(1 + c)

[

(2 − x2)
√
c2 − x2

1 − x2
− 2c

]

+
2

x2
ln

x(1 + c)

c+
√
c2 − x2

− 2 − 3x2

x2(x2 − 1)3/2
arccos

x2 + c

x(1 + c)
, (1 < x ≤ c)

2f−1

x2
, (x > c).

(17)

wheref = 1/[ln(1 + c) − c/(1 + c)]. Note the asymptotic behaviorG(x) → 1/2 for x → 0, while the convergenceκM → ∞ in this

c© 0000 RAS, MNRAS000, 1–31



6 M. Takada & B. Jain

Figure 2. Left panel: Radial profiles of the convergence (solid curve) and shear (dashed curve) fields for an NFW halo. The halo mass isM = 1014h−1M⊙,
lens redshiftzl = 0.2 and source redshiftzs = 1. For comparison, the dot-dashed curve shows a singular isothermal sphere(ρh ∝ r−2) with the same virial
mass. The two arrows show the scale radius and the virial radius of the NFW profile.Right panel: The angular scales of the scale and virial radii for a lens
halo are plotted against its redshift. The three curves showthe results for halo massesM/M⊙ = 1013, 1014 and1015 , from bottom to top. Halos relevant
for lensing statistics haveθs <

∼ 2′ for their scale radii at redshiftz = 0.4. Thus the effect of the inner structures of the halo profile onlensing statistics should
appear at scales<∼ 2′.

limit (following from the NFW inner slopeρh ∝ r−1). This feature is in contrast to the case of a power law density profile ρh ∝ r−n

(1 < n ≤ 3), which leads toκM , γM ∝ θ1−n and the asymptotic behaviorκM , γM → ∞ for θ → 0. Outside the virial region the shear
amplitude behaves like the field around a point mass,γM ∝ 1/θ2, due to the sharp cutoff of the mass distribution. Takingc → ∞ in the
equation above leads to the expression forγM in Bartelmann (1996; also see Wright & Brainerd 2000), whichis derived from a line-of-sight
projection of the NFW profile under the assumption that the profile is valid for an infinite range beyond the virial region. As shown in Figure
A4, if one adopts the expression forγM in Bartelmann (1996) the amplitude of shear correlations issignificantly overestimated. Therefore,
the halo profile boundary should be carefully considered to obtain accurate results as well as a consistent formulation.

The sketch in Figure 1 illustrates how a background galaxy image istangentially deformed around a foreground lens with an axially-
symmetric profile. In the weak lensing regime, the shear pattern is described by a pureE-mode. In Cartesian coordinates with the center
taken as the halo center, the two shear components can be expressed as

γM,1(θ) = −γM (θ) cos 2ϕθ , γM,2(θ) = −γM(θ) sin 2ϕθ , (18)

whereϕθ is the angle between the first x-axis and the line connecting the halo center and the source galaxy position (see Figure 1).
The left plot in Figure 2 shows the radial profiles of the convergence (solid curve) and shear (dashed curve) for an NFW haloof mass

1014h−1M⊙, computed using equations (13) and (16). We use theΛCDM model, lens redshiftzl = 0.2 and source redshiftzs = 1. The
two arrows denote the angular scalesθs and θvir corresponding to the scale radius and the virial radius, respectively. In contrast to the
convergence, the shear is almost constant in the inner region and does not vanish forθ ≥ θvir, rather it follows the point mass profile∝ θ−2.
It should be noted that the shear profile appears to be not a smoothly varying function atθ = θvir because of the artificial sharp halo boundary.
For comparison, the dot-dashed curve shows the shear amplitude for a singular isothermal sphere (SIS) with the profileρh ∝ r−2 (for this
case the convergence and shear fields coincide). The comparison manifests the characteristic feature for the NFW shear field. For example,
the plateau profile,γM ≈ constant, atθ <∼ θs could be a direct test of the inner slopeρh ∝ r−1.

The right panel in Figure 2 explicitly shows the angular scales of the scale and virial radii for lens halos as a function ofredshift. We
consider the mass scales,M/M⊙ = 1013, 1014 and1015. Halos withM > 1013M⊙, which dominate the contribution to lensing statistics
on small, non-linear scales, haveθs <∼ 2′ for their scale radii at redshiftz = 0.4. Thus, the figure implies that the the inner region likely
affects the lensing statistics on angular scales<∼ 2′, as we will show explicitly in Figure 13.

2.4 Real-space halo approach

In the halo model, the 2PCF of the convergence field,ξκ(θ), can be expressed as the sum of correlations within a single halo (1-halo term)
and between two halos (2-halo term). In TJ03b, we obtained the real-space relation for the 1-halo term:

ξ1h
κ (θ) ≡ 〈κ(θ1)κ(θ2)〉1h =

∫ χs

0

dχ
d2V

dχdΩ

∫

dM n(M ;χ)

∫ θvir

0

ds

∫ 2π

0

dϕ s κM (s;χ)κM (|s + θ|;χ), (19)

c© 0000 RAS, MNRAS000, 1–31



Three-Point Correlations in Lensing 7

Figure 3. Projected number density of halos more massive than a given mass scaleM ,N(> M), betweenz = 0 and1 for theΛCDM model.

whered2V/dχdΩ = d2
A(χ) for a flat universe, and we have used polar coordinates = s(cosϕ, sinϕ) to write d2s = sdsdϕ. 〈· · ·〉

denotes the ensemble average. From statistical symmetry, we can set the separation vectorθ to be along the first axis, so that|s + θ| =
(s2 + θ2 + 2sθ cosϕ)1/2. To obtainξ1h

κ for a given cosmological model, we perform a 4-dimensional numerical integration. Equation (19)
shows thatξ1h

κ is given by the sum of lensing contributions due to halos along the line of sight weighted with the halo number density on the
light cone. Hence, this form correctly accounts for multiple lensing due to halos at different redshifts.

Figure 3 plots the angular number density of halos more massive than a given mass scaleM between the source redshiftzs = 1 and
the present:N(> M) =

∫ zs

0
dz d2V/(dzdΩ)

∫ ∞

M
dM ′ n(M ′; z). One can seeN(> M) <∼ 10−1 arcmin−2 for halos withM > 1013M⊙,

which provide dominant contribution to the lensing statistics on small angular scales (see Figure 14). This clarifies that the 1-halo contribution
is primarily due to a single lens halo, and that there is only asmall probability for multiple lensing due to such massive halos at different
redshifts. However, one should keep mind the importance of multiple lensing due to such cluster-scale halos and less massive halos, as shown
by White, Van Waerbeke & Mackey (2002) and Padmanabhan, Seljak & Pen (2003).

The form of equation (19) allows us to straightforwardly extend it to compute the 2PCF of shear fields by replacing the convergence
profile,κM , with the shear profile,γM , for a given halo. The 1-halo term in Cartesian coordinates is

〈γµ(θ1)γν(θ2)〉1h =

∫ χs

0

dχ d2
A(χ)

∫

dM n(M ;χ)

∫ ∞

0

ds

∫ 2π

0

dϕ s γM (s;χ)γM (|s + θ|;χ)ǫµ(s)ǫν(s + θ), (20)

where ǫµ is the phase factor of the shear field as given by equation (5);ǫµ(s) = −(cos 2ϕ, sin 2ϕ) and ǫµ(s + θ) ≡
−(cos 2ϕs+θ , sin 2ϕs+θ) with (cosϕs+θ , sinϕs+θ) = −|s + θ|−1(s cosϕ + θ, s sinϕ). In contrast to equation (19), the equation

above employs an infinite integration range ford2s in order to account for the non-local property of the shear fields. In practice, setting the
upper bound of

∫

ds to be three times the projected virial radius gives the same result, to within a few percent. We investigate the accuracy of
equation (20) as well as its self-consistency with other methods in§A.

Since the two shear components are not invariant under coordinate rotation, the shear 2PCFs generally depend on the relative orientation
of the two points (e.g., Kaiser 1992). This issue has been well studied in the literature (Kamionkowski et al. 1998; Crittenden et al. 2002;
Schneider et al. 2002a). One way to avoid the coordinate dependence is to use the+/× decompositions, where the+ component is defined
as the shear field in parallel or perpendicular direction relative to the line connecting the two points taken, while the× component is the45◦

rotated shear field. We can thus define the rotationally invariant 2PCFs of the shear field:

ξγ,+(θ) = 〈γ+(θ1)γ+(θ2)〉,
ξγ,×(θ) = 〈γ×(θ1)γ×(θ2)〉. (21)

It should be noted that〈γ+(θ1)γ×(θ2)〉 and 〈γ×(θ1)γ+(θ2)〉 vanish because of invariance under parity transformation.We will also
consider the following 2PCF:

ξγ(θ) = 〈γ(θ1) · γ∗(θ2)〉. (22)

Note thatξκ(θ) = ξγ(θ). The 1-halo term contributions to these shear 2PCFs can be calculated by replacing the phase factorsǫµǫν in
equation (20) with

ǫµ(s)ǫν(s + θ) →







cos 2ϕ cos 2ϕs+θ + sin 2ϕ sin 2ϕs+θ , for ξγ ,

cos 2ϕ cos 2ϕs+θ , for ξγ,+,

sin 2ϕ sin 2ϕs+θ , for ξγ,×,

(23)
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θ3

q

r
θ2

θ1

q

r

3’

2π−ψ
o’

2’

mirror transformation

ψ

o

1’

Figure 4. Upper: A sketch of the triangle configuration, parameterized byr, q andψ, used to describe the 3PCF. The solid and dashed lines at eachvertex
show the positive directions of the+ and× components of the shear field, defined with respect to the triangle center denoted byo. Lower: The mirror
transformation of the triangle with respect to the side vector r for ξ×++ is shown as one example. Theγ× component at each vertex changes sign under the
mirror transformation (at vertices1 and1′ in this case).

An alternative approach to the lensing 2PCF, which is conventionally used in the literature, is based on a model of the non-linear 3D
power spectrum of the mass,P (k). CombiningP (k) with Limber’s approximation (Limber 1954; Kaiser 1992) allows us to compute the
shear 2PCFs:

〈γµγν〉(θ) =

∫ χs

0

dχ W 2(χ, χs)d
−2
A (χ)

∫

ldl

2π
P

(

k =
l

dA(χ)

)

F (lθ). (24)

Setting the window function toF (x) = J0(x), [J0(x) + J4(x)]/2 and [J0(x) − J4(x)]/2 yields ξγ , ξγ,+ andξγ,×, respectively. So far,
there are two well studied models for the nonlinearP (k). One is the fitting formula calibrated fromN -body simulations (e.g., Jain, Mo
& White 1995, Peacock & Dodds 1996, and Smith et al. 2002). This method has been extensively used for the interpretation ofcosmic
shear measurements in terms of cosmological parameters (e.g., Van Waerbeke 2001b). The other is the recently developedFourier-space halo
approach (Seljak 2000; Ma & Fry 2000b,c; Scoccimarro et al. 2001). In the halo model,P (k) is similarly expressed as sum of the 1- and
2-halo terms;P (k) = P1h(k) + P2h(k) (see§2.2 in TJ0b for details). InsertingP1h(k) into equation (24) leads to the 1-halo term of the
shear 2PCFs in the Fourier-space halo model. Note that the condition ξκ = ξγ holds, since they both have the same window functionJ0 in
equation (24).

We turn to the 3PCF of lensing fields, which is main focus of this paper. The 1-halo term of the 3PCF of the convergence field isgiven
by equation (52) in TJ03b:

ζ1h
κ (r, q, ψ) ≡ 〈κ(θ1)κ(θ2)κ(θ3)〉1h =

∫ χs

0

dχ d2
A(χ)

∫

dM n(M ;χ)

∫ θvir

0

ds

∫ 2π

0

dϕ s κM (s)κM (|s + r|)κM (|s + q|), (25)

where we have set|s + r| = (s2 + r2 + 2rs cosϕ)1/2 and |s + q| = [s2 + q2 + 2sq cos(ϕ − ψ)]1/2. From statistical symmetry, the
convergence 3PCF can be expressed as a function of three parametersr, q andψ characterizing the triangle configuration, as shown in Figure
4. Note that we often omitχ in the argument ofκM or γM for simplicity. This equation means that we can computeζ1h

κ by a 4-dimensional
integration for any triangle configuration, which is the same level of computation as the 2PCF. This holds for higher-order moments as well
(TJ03b), which is a great advantage of the real-space halo model. For comparison, the Fourier-space halo model requiresa 6-dimensional
integration to getζ1h

κ . In TJ03b, we have also developed approximations for computing the 2- and 3-halo terms ofζκ. The 2-halo term is
relevant for a range of transition scales between the non-linear and quasi-nonlinear regimes, while the 3-halo term dominates in the large
scale, quasi-linear regime where perturbation theory (PT)is valid.

We can extend equation (25) to the shear 3PCFs. Since the shear field has two components at each vertex of a given triangle configuration,
we can formally construct eight (23 = 8) components of the shear 3PCFs. In Cartesian coordinates the functions are
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ζγ,abc(θ1, θ2, θ3) ≡ 〈γa(θ1)γb(θ2)γc(θ3)〉, (26)

wherea, b, c = 1, 2. Note that the subscriptsa, b, c correspond to the shear components at verticesθ1, θ2 andθ3, respectively, in our
convention (see Figure 4). As for the shear 2PCFs, the 3PCFs defined above are not invariant under coordinate rotation. Therefore, in contrast
to the 3PCF of the convergence or any scalar quantity, they are not specified by three parameters. Instead four parametersare needed, e.g.,
r, q, ψ and the orientation angle of the side vectorr relative to the first coordinate axis. The real-space halo model yields the following
expressions for the 1-halo terms of the shear 3PCFs:

ζ1h
γ,abc(r, q) =

∫ χs

0

dχ d2
A(χ)

∫

dM n(M ;χ)

∫ ∞

0

ds

∫ 2π

0

dϕ s γM (s)γM (|s + r|)γM (|s + q|)ǫa(s)ǫb(s + r)ǫc(s + q), (27)

with

ǫa(s) = −(cos 2ϕ, sin 2ϕ),

ǫb(s + r) = −(cos 2ϕs+r , sin 2ϕs+r),

ǫc(s + q) = −(cos 2ϕs+q , sin 2ϕs+q) (28)

where(cosϕs+r , sinϕs+r) = (r + s cosϕ, s sinϕ)/|s + r|, (cosϕs+q , sinϕs+q) = (q cosψ + s cosϕ, q sinψ + s sinϕ)/|s + q|,
|s + r| and|s + q| are given below equation (25), and we again take the halo center as the coordinate center, using statistical symmetry.

To avoid the coordinate dependence for the shear 3PCFs, we again use the+/× decomposition of the shear fields, as stressed in SL03.
For the three-point case, however, there is no unique choiceof the reference direction to define the+/× components. Following ZS03 and
TJ03a, we take the ‘center of mass’,o, of the triangle, defined by

o =
1

3

3
∑

i=1

θi = s +
1

3
(r + q cosψ, q sinψ). (29)

The projection operators, which transformγ1 andγ2 at each vertex into the+/× components, with respect too, are

P +(θi) = −(θ̃2i1 − θ̃2i2, 2θ̃i1θ̃i2)/θ̃
2
i , P ×(θi) = −(−2θ̃i1θ̃i2, θ̃

2
i1 − θ̃2i2)/θ̃

2
i , (30)

whereθ̃i = θi − o (i = 1, 2, 3). The geometry of the triangle we consider is illustrated inFigure 4, where the solid and dashed lines at each
vertex denote positive directions of the+ and× components. Using these projections, we can thus define the shear 3PCFs from combinations
of the+/× components so that the resulting 3PCFs are invariant under rotations of the triangle with respect too:

ζγ,νµτ (r, q, ψ) = P a
µ (θ1)P

b
ν (θ2)P

c
τ (θ3)〈γa(θ1)γb(θ2)γc(θ3)〉, (31)

whereµ, ν, τ = + or ×. Inserting equation (27) into the r.h.s above yields the 1-halo term forζγ,νµτ . The projection operators and〈· · ·〉
commute, since the projection operators do not depend on theintegration variables, as seen from equation (30). The shear 3PCFs defined
in this way are functions of the three parametersr, q andψ. Although we adopt the center of mass throughout this paper,SL03 proved that
the eight shear 3PCFs with respect toany center can be expressed as linear combinations of the eight 3PCFs above. To complete the halo
model predictions, it is necessary to develop the perturbation theory predictions for the shear 3PCFs, which are relevant on large scales. For
the convergence we have obtained these, but the complex spin-2 properties of the shear fields make it non-trivial to obtain the PT prediction.
We will consider only the 1-halo term for predictions of the shear 3PCFs. Nevertheless, the 1-halo term agrees with the simulation results on
scales of interest, as shown below.

3 TRIANGLE CONFIGURATION DEPENDENCES OF THE SHEAR 3PCF

From the observation that there are eight shear 3PCFs, SL03 and ZS03 addressed the questions: how many functions are non-zero? How does
each function carry information about theE/B-modes? In TJ03a, using ray-tracing simulations, we qualitatively verified the conclusions of
SL03 and ZS03, which were based on analytical studies. We found that: (1) The eight 3PCFs are generally non-zero. (2) For apureE-mode,
two or four components vanish for isosceles or equilateral triangles, respectively. (3) We also studied the triangle configuration dependence
of the shear 3PCF given by equation (36), and pointed out thatthey offer a promising way to disentangle theE/B-modes for measured shear
3PCFs. Here we summarize these characteristics of the shear3PCFs.

We restrict ourselves to a pureE field, expected in the weak lensing regime. We consider a mirror transformation as shown in Figure 4,
which illustrates the transformation with respect to the side vectorr for ζ×++. It corresponds toψ → 2π−ψ in our parameterization. From
statistical homogeneity and symmetry, the amplitude of theshear 3PCF depends only on the distances between the center and each vertex.
Hence, the absolute amplitudes ofζ×++ for the two triangles shown should be same. But the sign ofγ× at the vertex1′ changes under this
mirror transformation. According to this property, we can divide the eight 3PCFs into two groups:

Parity-even functions: ζµντ (r, q, ψ) = ζµντ (r, q, 2π − ψ), for (µ, ν, τ ) = (+,+,+), (+,×,×), (×,+,×), (×,×,+),

Parity-odd functions: ζµντ (r, q, ψ) = −ζµντ (r, q, 2π − ψ), for (µ, ν, τ ) = (×,×,×), (×,+,+), (+,×,+), (+,+,×). (32)

Note that the 3PCF of a scalar quantity transforms asζ(r, q, ψ) = ζ(r, q, 2π − ψ).
Next we consider special triangle configurations: the first is an isosceles triangle withr = q. In this case, theγ× components at

vertices1 and1′ in Figure 4 are statistically identical (viewed from the center of the triangle, they should have equal contributions when
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averaged over the matter distribution)6. We thus have additional symmetries for the two 3PCFs:ζ×++(r, q, ψ) = ζ×++(r, q, 2π − ψ) and
ζ×××(x1, x1, ψ) = ζ×××(x1, x1, 2π − ψ). These relations and equation (32) yield

Isosceles Triangles:ζ×++ = ζ××× = 0. (33)

Note that the other two parity-odd functions,ζ+×+ andζ++×, do not vanish in general, since the componentγ× is at a vertex bounded by
unequal sides. For equilateral triangles, however, all four parity-odd functions vanish:

Equilateral Triangles : ζ××× = ζ×++ = ζ+×+ = ζ++× = 0. (34)

The 3PCFs discussed above do not vanishing for aB-mode shear field, as explained below. Hence these 3PCFs provide a direct, simple test
of theB-mode contribution to the measured signal.

Let us consider again generic triangle configurations, but now for a pureB field. As discussed by TJ03a, the analog of equation (32) for
a B-mode spin-2 field is:

ζµντ (r, q, ψ) = −ζµντ (r, q, 2π − ψ), for (µ, ν, τ ) = (+,+,+), (+,×,×), (×,+,×), (×,×,+),

ζµντ (r, q, ψ) = ζµντ (r, q, 2π − ψ), for (µ, ν, τ ) = (×,×,×), (×,+,+), (+,×,+), (+,+,×). (35)

Thus the symmetric and anti-symmetric functions are reversed compared to theE-mode. This follows from the fact that given a pureE field,
we can generate a pureB field by rotating theE field at each point by45 degrees (Kaiser 1992). We can then consider the eight 3PCFs of
a pureB mode similarly as done for the shear 3PCFs. Since this procedure transforms the originalE-mode componentsγE

+ andγE
× at each

point intoγB
× andγB

+ in the transformedB field, respectively, we getζE
+++ → ζB

××× and so on. For a general spin-2 field that contains both
E/B modes, the configuration dependences of equations (32) and (35) do not hold. The eight 3PCFs therefore have to be measuredover the
full rangeψ = [0, 2π], unlike the 3PCF of a scalar quantity.

From the symmetry properties discussed above, we propose simple estimators for theE/B-mode contributions to measured shear
3PCFs:

Estimator ofE-mode: ζE
µντ (r, q, ψ) =

1

2
[ζγ,µντ (r, q, ψ) ± ζγ,µντ (r, q, 2π − ψ)],

Estimator ofB-mode: ζB
µντ (r, q, ψ) =

1

2
[ζγ,µντ (r, q, ψ) ∓ ζγ,µντ (r, q, 2π − ψ)], (36)

where the upper and lower signs in± or ∓ are meant for (µ, ν, τ ) = (+,+,+), (+,×,×), (×,+,×), (×,×,+) and
(×,×,×), (×,+,+), (+,×,+), (+,+,×), respectively. Note that this argument holds if theE andB modes are statistically uncorre-
lated. These estimators allow one to separate the lensingE-mode contribution from the measured 3PCFs that are in general contaminated by
theB-modes contribution of intrinsic alignments, source galaxy clustering and observational systematics. In comparison, for the case of the
shear 2PCFs, a non-local integration is required to discriminate the lensingE-mode (Schneider et al. 1998; Crittenden et al. 2002; Schneider
et al. 2002a).

After the submission of this paper, Schneider (2003) pointed out that if aB field is parity invariant in a statistical sense, any correlation
function that contains an odd number ofB-mode shear components vanishes. This is likely to be true for a cosmologicalB field such as
intrinsic alignments if we have a sufficient survey area. Therefore, the argument we have made above is valid only for a parity non-invariant
B field. This can be seen in that the 45 degree rotation procedure described above to generate aB field from simulations would produce shear
fields around clusters with a clockwise curl direction, which violates statistical parity invariance. Nevertheless, we believe our discussion
is useful, because generic observational systematics are likely lead to the violation of parity invariance. Hence, these arguments strength
practical usefulness of the shear 3-point functions to disentangleE/B modes from the measurement.

4 COMPARISON WITH RAY-TRACING SIMULATIONS

In this section, we address the accuracy of the halo model forpredicting lensing statistics, in particular the 3PCFs, bycomparing model
predictions with ray-tracing simulation results. The validity of the real-space halo model for shear correlations, developed in§2, is carefully
investigated in§A.

4.1 Cosmological models

In this paper, we mainly consider two CDM models whose cosmological parameters are chosen to facilitate comparison withthe ray-tracing
simulations used below (Jain et al. 2000; Ménard et al. 2003; Hamana et al. 2003). One is the SCDM model (Ωm0 = 1, h = 0.5 and
σ8 = 0.6), and the other is theΛCDM model (Ωm0 = 0.3, Ωλ0 = 0.7, Ωb0 = 0.04, h = 0.7 andσ8 = 0.9). For theΛCDM model, we
need to care about the baryon contribution to the input primordial power spectrum. Although we assume a scale-invariantpower spectrum
for the primordial fluctuations, we employ different CDM transfer functions for the SCDM andΛCDM models. For the SCDM model, we
use the transfer function in Bond & Efstathiou (1984) with the shape parameterΓ = Ωm0h = 0.5. On the other hand, for theΛCDM model
we employ the BBKS transfer function (Bardeen et al. 1986) with the shape parameter in Sugiyama (1995), since the shape parameter
approximately describes the baryon contribution.

6 This argument is true only for a pureE field, since it relies on the invariance of theE-mode under parity transformation.
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4.2 Ray-tracing simulations

We use ray-tracing simulations of the lensing convergence and shear fields. We will mainly consider two cosmological model simulations,
theΛCDM model (kindly made available to us by T. Hamana; see Ménard et al. 2003; Hamana et al. 2003 for details) and the SCDM model
(Jain et al. 2000), as described in§4.1. TheN -body simulations on which these are based were carried out by the Virgo Consortium7 (also
see Yoshida, Sheth & Diaferio 2001), and were run using the particle-particle/particle-mesh (P3M) code with a force softening length of
lsoft ∼ 30h−1kpc. The linear power spectra of the initial conditions of the simulations were set up using the transfer function from CMBFast
(Seljak & Zaldarriaga 1996) for theΛCDM model and the fitting function in Bond & Efstathiou (1984)for the SCDM model, respectively.
For the halo model predictions forΛCDM , we employ the BBKS plus Sugiyama transfer function as described above. We verify in Figure
A3 that the transfer function is sufficiently accurate (see also Eisenstein & Hu 1999).

The ΛCDM simulation employs5123 CDM particles in a cubic box479h−1Mpc on a side, while the SCDM simulation uses2563

particles in a84.5h−1Mpc side-length box. The particle mass ismpart = 6.8 × 1010h−1M⊙ and1.0 × 1010h−1M⊙, respectively. The
resolution scale, which is not affected by the discretenessof theN -body simulations, is estimated roughly as being ten times the grid size,
leading toλ >∼ 94h−1kpc and33h−1kpc for theΛCDM and SCDM models, respectively. Therefore, the SCDM model simulation has better
spatial resolution than theΛCDM model.

The multiple-lens plane algorithm to simulate the lensing maps from theN -body simulations is detailed in Jain et al. (2000) and Hamana
& Mellier (2001). Throughout this paper, we use a single source redshift ofzs = 1. The simulated areas of the lensing maps areΩs = 11.7
and7.69 degree2 for theΛCDM and SCDM models, respectively. The map is given on10242 grids with grid spacingθgrid = 0.′2 and0.′16
for the two models. To analyze the correlation functions we should be careful about the possibility that the finite angular resolution could
affect computations of then-point correlation functions from the simulated maps on small scales. It is not easy to infer the effective angular
resolution from the spatial resolution of theN -body simulations due to the broad lensing projection kernel. Further, the projected density
field was smoothed to suppress the discreteness effect of theN -body simulations. The smoothing scale is likely to determine the angular
resolution rather than the spatial resolution of theN -body simulation. Note that theΛCDM simulation we employ below is the one labelled
with small-scale smoothing in Ménard et al. (2003). These resolution issues were carefully discussed in Ménard et al. (2003) and Jain et al.
(2000), as can be seen from Figure 3 in Ménard et al (2003) andFigure 2 in Jain et al. (2000). The former shows the projectedangular scale
of the smoothing as a function of redshift, while the latter shows the angular scale of the force-softening length of theN -body simulation.
These scales areθres ∼ 0.′3 and0.′2 at z = 0.4 for theΛCDM and SCDM models, respectively, wherez = 0.4 is approximately the peak
redshift of the lensing efficiency for source redshiftzs = 1. Therefore, angular scales that are not affected by finite resolution are likely to
be >∼ 1′, although the resolution of theΛCDM model simulation might be slightly worse than that of theSCDM model, as stated above. We
will keep in mind these resolution issues in the following analysis.

To compute the sample variance of the lensing statistics from the simulations, we use 36 and 9 realizations of the simulated lensing maps
for theΛCDM and SCDM models, respectively. The realizations are generated by randomly rotating and translating the N-body simulation
boxes (using the periodic boundary conditions of theN -body boxes) when the ray-tracing simulations are performed. However, they were
built from one realization of theN -body simulation, which is a sequence of the redshift-spaceevolution of large-scale structure. Therefore
the different realizations of the simulated lensing maps are not fully independent of each other. In particular, this could matter when we
compute the covariance for then-point correlations in the different bins from the simulations. This issue is still an open question, to be
addressed in the future using a sufficient number of truly independent ray-tracing simulations.

4.3 Algorithm for computing the 3PCF from simulated maps

To compute the 3PCFs of the lensing fields from the ray-tracing simulations, we implement the method described in§3.2.2 in Barriga &
Gaztañaga (2002). The 3PCF is given as a function of three parameters (r, q andψ) specifying the triangle configuration (see Figure 4).
The question is how we can efficiently find triplets from the simulated lensing map withNgrid grid points, subject to the constraint that the
triplet forms a given triangle configuration within the bin widths. We first select vertex 1 on the grid, and then search vertex 2 in the upper
half plane in an annulus of radiusr with given bin width, centered on vertex 1. For given pair 1-2, we look for vertex 3 in a semi-annulus
of radiusq in the upper plane above the line connecting vertices1 and 2 (in the anticlockwise direction from vertex 1 as our convention),
imposing the condition that the three vertices form the required triangle configuration within the bin widths. This results in all triangles being
counted once, if we impose the conditionsθ12 ≤ θ23 ≤ θ31. We can use the same list of neighbors to find vertices 2 and 3 for each vertex 1.
This process is illustrated in Figure 3 in Barriga & Gaztañaga (2002). Further, to compute the 3PCFs of the shear fields, we need to compute
the+/× components of the shear fields at each vertex of the triangle.The projection operators to compute these components are given as a
function of the list of neighbors of vertices 2 and 3, independent of the position of vertex 1, as can be seen from the definition of equation
(30). In summary, the 3PCF computation from the simulation map requires roughlyO(Ngrid) operations on sufficiently small scales. This is
significantly faster than a naive, direct implementation which requiresO(N3

grid) operations.

4.4 The two-point correlation function of the shear fields

In Figure 5 we present a comparison of the halo model predictions for the shear 2PCFs with those measured from the ray-tracing simulations
for theΛCDM (upper panel) and SCDM (lower panel) models. The left panel is the comparison forξγ . The solid curve is the halo model
prediction, while the square symbol denotes the simulationresult. The dashed curve denotes the result computed from the Smith02 formula.

7 seehttp://star-www.dur.ac.uk/˜frazerp/virgo/virgo.html for the details
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Figure 5. Comparison of model predictions for the shear 2PCFs with measurements from the ray-tracing simulations. The left panelshows the shear 2PCF,
ξγ = 〈γ · γ∗〉, for theΛCDM (upper panel) and SCDM (lower panel) models. The solid and dashed curves are the predictions from the halo model and the
Smith02 formula, respectively, while the square symbols with error bars denote the simulation result. Note that errorsin different bins are highly correlated
with each other. Similarly, the right panel shows the comparison forξγ,+ andξγ,×.

The theoretical predictions agree very well with the simulation results for the two CDM models. The smallest scale data from the simulations
corresponds to three times the grid size, and the error bar ineach bin is the sample variance for areaΩ = 11.7 and7.7 degree2 for the
ΛCDM and SCDM model simulations, respectively, as estimatedfrom the scatter among their 36 and 9 realizations (see§4.2). We note that
the errors in different bins are highly correlated with eachother. Even if one combines two neighboring bins, the error amplitude remains
almost unchanged. We have confirmed that this is true for all the statistical quantities we consider below, over angular scales of interest.

Similarly, the right panel in Figure 5 shows the comparison for ξ+ andξ×. The theoretical predictions forξγ,+ are again in agreement
with the simulation results. On the other hand, forξγ,×, the halo model prediction lies slightly below the simulation results atθ <∼ 5′, while
the Smith02 prediction agrees better. If we employ the halo boundary ofr180 as discussed in Figure A4, the model predictions agree better
with the simulations. The relation between the amplitudes of ξγ,+ andξγ,× is physically determined by thek-slope of the underlying mass
power spectrum, as can be seen from equation (24). Within theframework of the halo model, the slope is determined by the combined effects
of the halo profile, the mass function and the slope of the primordial power spectrum (Seljak 2000; Ma & Fry 2000a,b,c; Scoccimarro et al.
2001; TJ02; TJ03b). Thus, separate measurements ofξ+ andξ× could constrain these physical ingredients.

4.5 The three-point correlation function of the convergence field

In the following, we address the accuracy of halo model predictions for the 3PCFs of lensing fields by comparison with ray-tracing sim-
ulations. Until our recent work (TJ03a,b), there had been noanalytical model for the lensing 3PCFs on small angular scales, except for
investigations of the skewness and bispectrum of the convergence field based on extended perturbation theory (Scoccimarro & Frieman
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Figure 6. The 3PCF of the convergence field for equilateral triangles against side lengthr in arcminutes.Top panel: The thick solid curve shows the halo
model prediction for the reduced 3PCF,Qκ, defined by equation (37). The thin solid curves denote the 1-, 2- and 3-halo term contributions separately. The
dashed curve is the perturbation theory (PT) prediction.Middle panel: The comparison with simulations forQκ, as in Figure 5. The simulation result does not
display the bump inQκ seen in the halo model prediction. This is likely to be due to halo boundary effects in the standard implementation of the halo model
(see text for details). The dot-dashed curve denotes the result if we replace the 2- and 3-halo terms with the PT prediction. This modified halo model agrees
well with the simulation result.Bottom panel: The comparison for the 3PCF itself, as in the middle panel.

1999; Hui 1999; Van Waerbeke et al. 2001a) or the Fourier-space halo model (Cooray & Hu 2001a; TJ02). Hence we present a detailed
analysis of the accuracy of halo model predictions for the lensing 3PCFs.

First, we consider the 3PCF of the convergence field. As in theliterature, we define the reduced 3PCF as

Qκ(r, q, ψ) =
ζκ(r, q, ψ)

ξκ(r)ξκ(q) + ξκ(r)ξκ(|r − q|) + ξκ(q)ξκ(|r − q|) , (37)

where we have used the parametersr, q andψ to describe the triangle configuration and|r − q| = (r2 + q2 − 2rq cosψ)1/2 (see Figure 4).
The reduced 3PCF is sensitive toΩm0, but insensitive to the power spectrum normalizationσ8, scaling roughly asQκ ∝ Ω−1

m0 (Bernardeau
et al. 1997; Jain & Seljak 1997; TJ02). Therefore, measuringthe 3PCF is expected to break degeneracies in the determination ofσ8 andΩm0

from measurements of the shear 2PCFs.
Figure 6 shows the convergence 3PCF for equilateral triangles against side length for theΛCDM model. The thick solid curve in the

top panel shows the halo model prediction forQκ. A bump feature is evident over the range1 <∼ r <∼ 5′. As discussed below, this feature is
unlikely to be real. The three thin curves show the 1-, 2- and 3-halo terms separately. These contributions to the convergence 3PCF are present
in the numerator ofQκ, but the 2PCF in the denominator includes the full contribution (1- plus 2-halo terms). The 1-halo term provides the
dominant contribution toQκ at small scales,r <∼ 3′. The 2-halo term is relevant over the transition scales between the non-linear and linear
regimes. The bump feature inQκ is mainly due to the 2-halo term contribution. The 3-halo term eventually dominates on larger scales, and
gives the perturbation theory (PT) result forQκ atr >∼ 10′. The 2- and 3-halo terms appear to be relevant over a wide range of angular scales
compared to the 3D mass 3PCF,Q, shown in Figure 7 in TJ03b, since the lensing projection causes various length scales at different redshifts
to contribute to the lensing statistics. Even at the non-linear scale ofr = 1′, the 2- and 3-halo terms make11% and4% contributions toQκ.

The middle panel shows a comparison of the halo model prediction with the simulation result forQκ, as in Figure 5. The bump feature
in the halo model prediction cannot be seen in the simulationresult and, as a result, the halo model overestimates the simulation result at
more than1σ. We have confirmed that this is also true for the SCDM model (also see Figures 8 and 10 in TJ03b for the discrepancy between
the halo model prediction and the simulation result for the 3D mass 3PCF). There are two effects to be considered in findingthe origin of
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14 M. Takada & B. Jain

Figure 7. Plots for the SCDM model, as the middle panel in Figure 6. The square symbols show the simulation result forQκ for the SCDM model. The
triangles denote the simulation results for theΛCDM model, with the error bars scaled to the same area. The comparison shows the sensitivity ofQκ to the
cosmological model, in particular toΩm0.

the bump feature. First, the standard halo model does not take into account halo exclusion effects: the 2- and 3-halo terms should require
that different halos be separated by at least the sum of their virial radii. Second, so far we have used a sharp cutoff for the halo profile,
which could lead to inaccuracy in the prediction as discussed for Figure A48. In fact, Figure 8 in TJ03b clarified that modifications aimedat
resolving these two effects do suppress the bump feature in the 3D massQ (see also Somerville et al. 2001, Bullock et al. 2002 and Zehavi
et al. 2003 for discussions on the halo exclusion effect). However, resolving these problems requires a more careful andsystematic study, in
combination withN -body simulations. This is beyond the scope of this paper. Therefore, we instead employ a simple prescription to avoid
the overestimation ofQκ – we replace the contribution from the 2- plus 3-halo terms inthe 3PCF with the PT prediction. This treatment
preserves two merits of the halo model: the quasi-linear 3PCF at large scales is reproduced by the PT result alone, and thenon-linear 3PCF
on small scales is described primarily by the 1-halo term. The dot-dashed curve shows the modified halo model prediction forQκ. It displays
excellent agreement with the simulation results over the scales we have considered. An alternative method is to simply ignore the 2-halo term
contribution to the 3PCF, leading to similar agreement. Hereafter, we will use the 1-halo term plus the PT result as the halo model prediction
for the convergence 3PCF.

The halo model and the simulations show a flattening ofQκ at small scales,r <∼ 3′ (the halo model predicts a slight decrease ofQκ

with decreasingr). The same feature is found for the SCDM model, as shown in Figure 7. This is consistent with the hierarchical ansatz for
relating higher order correlations with the 2PCF (e.g. Peebles 1980). For the halo model this behavior results mainly from the NFW profile
and the halo concentration used (Bullock et al. 2001). It will be of great interest to address these issues in detail usingray-tracing simulations
with higher angular resolution that probes sub-arcminute scales.

The bottom panel compares the halo model prediction for the 3PCF (1-halo term plus PT) with the simulation result. The agreement
is excellent, while it is clear that PT substantially underestimates the 3PCF at scalesθ <∼ 5′. However, in contrast to the middle panel, the
standard halo model prediction (1h+2h+3h terms) denoted bythe solid curve displays equally good agreement. This explains why theQκ

parameter is a more sensitive indicator of gravitational clustering (see Bernardeau et al. 2002b for an extensive review). For example, the
amplitude and configuration dependence of theQ parameter have been widely used in the literature in connection with questions of stable
clustering and the hierarchical ansatz (e.g., Peebles 1980; also see Jain 1997; Ma & Fry 2000b; TJ03b). In fact, from a comparison between
the middle and bottom panels, one can see that theQκ parameter displays a pronounced transition between the non-linear and quasi-linear
regimes –Qκ ≈ 45 and <∼ 30 atθ <∼ 3′ and >∼ 5′, respectively. This feature originates from the transitions in the 2PCF and 3PCF of the 3D
mass distribution predicted for CDM structure formation (e.g., Figures 1 and 11 in TJ03b).

Figure 7 shows a comparison of the halo model prediction forQκ (dot-dashed curve) with simulation results (square symbol) for the
SCDM model, as in the middle panel of the previous figure. The halo model prediction matches the simulation results. For comparison, the
triangle symbols denote the simulation results for theΛCDM model, which shows the strong sensitivity ofQκ to the cosmological model,
especially toΩm0.

The accuracy of the halo model is further explored in Figure 8, which compares the prediction for the reduced convergence3PCF,Qκ,
with simulation results against triangle configurations for theΛCDM model. Since the halo model employs the spherically symmetric NFW
profile, it is interesting to examine whether or not the halo model can properly describe the configuration dependence of the 3PCF seen
in simulations which include contributions from realisticaspherical halos with substructure. The left panel shows the result for isosceles
triangles withr = q = 3′ against varying the interior angleψ (see Figure 4 for the triangle geometry). The right panel is for more elongated
triangles withr = 2q ≈ 3′. Here, the scaler ≈ 3′ is chosen based on the fact that it is in the non-linear regimeand unlikely to be affected
by the resolution of the simulations. All the plots display excellent agreement between the halo model predictions and the simulations.

4.6 The three-point correlation functions of the shear fields

We turn to the shear 3PCFs, which are more complex but are important because they are easier to measure from survey data than the
convergence 3PCF. We will focus on the shear 3PCFs rather than the reduced 3PCF, since there is an ambiguity in defining them for the

8 Note that, even if we employ the halo boundary ofr180 as discussed in Figure A4, the bump feature forQκ remains at the same level
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Figure 8. The reduced 3PCF of the convergence field,Qκ, for theΛCDM model against triangle configurations parameterized byr, q andψ (see Figure
4). The left panel shows the result for isosceles triangles with r = q = 3′ fixed and varyingψ, while the right panel for more elongated triangles with
r = q/2 = 3′.

Figure 9. The shear 3PCFs for equilateral triangles against side length r for the ΛCDM (upper panel) and SCDM (lower panel) models, as in the bottom
panel of Figure 6. From symmetry considerations, the four parity-odd functions defined by equation (32) vanish for anE-mode, and three of the parity even
functions are equal. Hence, only the results forζ+++ andζ+×× are shown. Note that the absolute value ofζ+×× is plotted, since it becomes negative at
large scales. The two solid curves are the halo model predictions, using only the 1-halo term.

shear. The ambiguity arises from the fact that the+/× components are defined with respect to the triangle center (see equation (31) to form
the 3PCF, hence there is no clear choice for defining the 2PCFsthat enter in the denominator ofQ. One way to do this is to useξγ,+ or ξγ,×

defined with respect to the side of the triangle connecting the two vertices, but we will not pursue this. Figure 9 comparesthe halo model
predictions with simulation results for the shear 3PCFs forequilateral triangles, as in the bottom panel of Figure 6. For equilateral triangles
there are only two independent, non-zero 3PCFs:ζ+++ andζ+×× = ζ×+× = ζ××+, while ζ××× = ζ×++ = ζ+×+ = ζ++× = 0 (see
§3 and also SL03 and TJ03a). The figure thus shows only the results for ζ+++ andζ+××. The upper and lower panels show the results for
theΛCDM and SCDM models, as indicated. Note that the plots are on alogarithmic scale and the absolute value ofζ+×× is plotted, since
it becomes negative on large scales. The halo model predictions include only the 1-halo contribution. Theζ+++ component carries most of
the information of the lensing signal for equilateral triangles (ZS03; TJ03a).

Figure 9 shows that the halo model agrees with the simulationresults for angular scalesr >∼ 2′ and >∼ 1′ for theΛCDM and SCDM
models, respectively. Whether or not the discrepancy at thesmaller scales is genuine is unclear due to the resolution limit of the simulations
(see§4.2). We found that the shear correlations are more sensitive to the angular resolution of the simulations than the convergence field.
The agreement extends to scales>∼ 10′, though the PT contribution to the shear 3PCFs is not included, in contrast to the convergence 3PCF
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16 M. Takada & B. Jain

Figure 10. The eight shear 3PCFs for theΛCDM model against triangle configurations, as in Figure 8. The upper and lower plots show the results for the
parity-even and -odd functions, respectively. Note that range on the y-axis for the right panel is about two times smaller than in the left panel. The solid curves
show the halo model predictions for the eight shear 3PCFs, while the symbols are the simulation results as indicated.

where the PT contribution is dominant at>∼ 5′. This agreement is somewhat surprising, but it might be explained as follows. The spin-2 field
properties of the shear fields cause cancellations between the shear 3PCFs to some extent, which explains why the shear 3PCF amplitude is
smaller than the convergence 3PCF by an order of magnitude (see Figure 8). The shear 3PCFs appear to be dominated by the coherent shear
pattern around a halo rather than filamentary structures in the quasi non-linear regime, which are described by PT (at least for triangles that
are close to equilateral).

Both the halo model and the simulations show a flattening and decline inζ+++ at small scales. The halo model predicts the decline at
slightly smaller scalesr <∼ 0.′5 compared to the simulations. The origin of this feature may be explained as follows. The shear 3PCFs vanish
as one goes to zero triangle size (as the three vertices approach the same point), since in this limit it is equivalent to the shear skewness which
vanishes from statistical symmetry. This limiting behavior is another way to see why the amplitude of the shear 3PCF is smaller than that of
the convergence. Nevertheless, it is possible that the flattening scale of the shear 3PCF reflects a scale related to the size of typical halos that
provide the dominant contribution. It will be interesting to study this feature more precisely with higher resolution simulations.

For ζ+××, the agreement between the halo model prediction and the simulation result is not good as forζ+++. However, the accuracy
of the simulation results is likely to be worse because of thesmaller amplitude ofζ+××.

The accuracy of the halo model for the shear 3PCFs is tested ingreater detail in Figure 10, which compares model predictions with
simulations for varying triangle configurations for theΛCDM model. The upper and lower panels show the parity-even and -odd functions,
respectively. As can be seen from the lower left panel, both the halo model predictions and the simulation results verifythat two parity-
odd functions vanish:ζ××× = ζ×++ = 0 for isosceles triangles (see§3). However, the other two parity-odd functions do carry lensing
information as pointed out by SL03 (also see TJ03a), as the× component is at the vertex bounded by unequal sides. Forψ = π/3 the
triangle is equilateral and these two functions also vanish.

The right panel of Figure 10 shows that all the eight functions are non-zero for general triangle configurations (SL03; TJ03a). In contrast
to the convergence 3PCF shown in Figure 8, the shear 3PCFs display complex configuration dependences and change sign withvaryingψ.
These features reflect the detailed structure of the underlying mass distribution as well as properties of the spin-2 field generated by an
E-mode signal.ζ+++ peaks aroundψ = π/3, where the triangle configuration is close to equilateral. For the general triangles shown in
the right panel, all the eight functions have roughly comparable amplitude. Comparing the left and right panels shows that more elongated
triangles lead to smaller amplitudes of the shear 3PCFs. These results are to be contrasted with the expectation that the3D mass 3PCF has
higher amplitude for elongated triangles on large scales (>∼ 10Mpc), reflecting the dominance of anisotropic structures inthe perturbative
regime (Scoccimarro & Frieman 1999; Bernardeau et al. 2002b; also see Figure 5 in TJ03b). The rangeψ = [0, π] is shown in our figures;
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Figure 11.As in the previous figure, for the SCDM model.

one should keep in mind the relationζ(ψ) = ±ζ(2π − ψ) for the lensingE-mode, where+ or − sign is taken for the parity-even or -odd
functions, respectively (§3; also see Figure 3 in TJ03a ).

To further check the accuracy of the halo model for differentcosmological models, Figures 11 and 12 show the results for the SCDM
andτCDM models, respectively. Note that the cosmological parameters for theτCDM model are the same for the SCDM model except for
the shape parameterΓ = 0.21 (Γ = 0.5 for the SCDM model). The angular resolution of the two modelsis the same (Jain et al. 2000). The
halo model predictions again match the simulation results for all eight functions. A comparison of Figure 11 and12 shows that the amplitude
of the shear 3PCF depends on the shape of the input linear masspower spectrum. In the context of the halo model picture, this is captured
by the dependence of the halo mass function on the power spectrum shape on the angular scales we considered. In summary, from Figures
10-12, one can see that the shear 3PCF amplitudes are sensitive to the cosmological models, but the oscillatory shape of each function is
quite similar for the three CDM models.

4.7 Summary: the halo model accuracy for predicting the lensing statistics

Here we summarize the results shown in Figures 5-12, which investigated the 2PCFs and the 3PCFs of the convergence and shear fields. It
has been shown that the halo model predictions are in remarkable agreement with the simulation results for all these statistical quantities over
the angular scales we have considered. In particular, the halo model reproduces the amplitudes and the complex configuration dependences
for the eight shear 3PCFs. We have used only the 1-halo term and not adjusted any model parameters to get this agreement. This implies
that the shear 3PCFs result from correlations between the tangential shear pattern around a single NFW profile, as pointed out by TJ03b and
ZS03. The agreement is striking, since the halo model rests on simplified assumptions of smooth, spherical halos while the halos in CDM
simulations are aspherical and contain substructure (e.g., Jing & Suto 2002). The projection of halos oriented in different directions and the
nonlocal properties of the shear appear to dilute the effectof some of the detailed structure of halos and make the spherically symmetric
profile a good approximation in the statistical sense.

It is not clear whether the agreement remains on smaller angular scales (<∼ 1′), due to the resolution limitation of the simulations we
have used. It is of great interest to address this issue usinghigher resolution simulations. On these scales new ingredients may be needed
for the halo model as well, such as the inclusion of substructure (Sheth & Jain 2002). The agreement we have shown holds fordifferent
cosmological models (ΛCDM , SCDM andτCDM models). This implies that the cosmological model dependences can be captured through
the spherical collapse model and the mass function used in the halo model. These results lead us to conclude that the halo model provides an
analytical method for predicting higher order lensing statistics with sufficient accuracy for our purposes.
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Figure 12.As in the previous figure, for theτCDM model. The cosmological parameters for theτCDM model are the same as for the SCDM model, except
for the shape parameterΓ which is0.21, while it is 0.5 for SCDM.

5 MEASUREMENT OF HALO PROFILE PARAMETERS FROM SHEAR CORRELA TIONS

In the following we address the question: how can measurements of the lensing 2PCF and 3PCFs be used to constrain halo model parameters?
In particular, we focus on the halo profile parameters: the inner slopeα for the generalized NFW profile in equation (10) and the halo
concentrationc in equation (12). We will show that forthcoming lensing surveys can put stringent constraints on these parameters. For this
study we will use the convergence 2PCF and 3PCF for simplicity, although the shear correlations are the direct observable. To use the shear
3PCFs, it is necessary to combine all the eight 3PCFs. Since the lensing information obtained combining the eight shear 3PCFs are related
to the convergence 3PCF, the results we obtain should hold asa first approximation. We also note that the statistics of theconvergence field
may be directly measured from future space based surveys such as the one proposed for the SNAP satellite (Jain 2002).

5.1 Sensitivity of the lensing 2PCF and 3PCF to profile parameters

In TJ03b, we showed that the 2PCF and 3PCF of the 3D mass distribution at small scales are sensitive to halo profile parameters (see Figures
12-14 in TJ03b). It was shown that the 3PCF is more sensitive to the halo profile than the 2PCF. This is expected to hold for lensing statistics
also, since the lensing fields are projections of the 3D mass distribution.

We derive analytical expressions in Appendix B for the halo convergence forα = 0, 1 and2 in the generalized NFW profile of equation
(10). To compute the convergence 2PCF and 3PCF for generalα (0 ≤ α ≤ 2) we simply interpolate from the 1-halo term predictions for
α = 0, 1 and2, using formulae similar to equation (42) in TJ03b; the interpolation is expected to work to better than10%.

Figure 13 shows the sensitivity of the convergence 2PCF (left panel) and 3PCF (right panel) to the inner slope parameterα and to the
concentration parameterc0; in our parameterizationc = c0(1 + z)−1(M/M∗)

−β with β = 0.13. Increasingα or c0 steepens the 2PCF and
3PCF for scalesθ <∼ 3′, since it increases the density profile in the inner region,r ≤ rvir/c. The curves coincide with each other at large
scales, because the outer region has the sloper−3 for all α. The 3PCF is more sensitive to modifications of the halo profile than the 2PCF;
this is because of the extra power of the halo profile in the 1-halo term.

Figure 14 shows the mass range of halos that contribute to thelensing statistics on scales of our interest. The figure shows the depen-
dences on the maximum mass cutoff in the halo model calculation on the convergence 2PCF and 3PCF. Massive halos withM > 1013M⊙

provide more than80% of the contribution over the scales we have considered. At smaller angular scales, less massive halos are more
relevant. One can also see that the 3PCF is more sensitive to massive halos than the 2PCF.
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Figure 13.The dependences of the 2PCF (left panel) and 3PCF (right panel) of the convergence field on halo profile parameters. The upper and lower dashed
curves show the halo model predictions withα = 2 and0 for the inner slope parameter of the generalized NFW profile of equation (10). The upper and lower
dot-dashed curves are the results for the concentration parameterc0 = 15 and3. The solid curve is the halo model result for our reference model, the NFW
profile withα = 1, c0 = 9.

Figure 14. The dependences of the 1-halo term contribution to the convergence 2PCF (left panel) and 3PCF (right panel) on the maximum mass cutoff used
in the calculation. From top to bottom, the five solid curves are the results for a maximum mass of1016 , 1015 , 1014, 1013 and1012M⊙, as indicated. The
dashed curve shows the total halo model prediction. Most contributions arise from halos ofM > 1013M⊙ on the scales we have considered, and the 3PCF
is more sensitive to massive halos than the 2PCF.
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5.2 Covariance of the 2PCF and 3PCF estimators

To rigorously extract parameter information from cosmic shear measurements, it is crucial to consider the covariance between the lensing
statistics in different bins. This issue for the shear 2PCFshas been investigated by Schneider et al. (2002b). It was shown that there are
strong correlations between the shear 2PCFs in different bins on small scales. Extending their method, we present analytic expressions for
the covariance of the convergence 3PCF and 2PCF. Note that the method described below can be extended to compute the covariance for the
shear 3PCFs, if one accounts for the spin-2 phase factors of the shear fields and the projection operators.

Following Schneider et al. (2002b), an estimator of the convergence 3PCF from realistic data can be expressed as

ζest
κ (r, q, ψ) =

1

Ntrip

∑

ijk

κiκjκk∆ijk(r, q, ψ), Ntrip =
∑

ijk

∆ijk(r, q, ψ), (38)

where indexi denotes source galaxies andNtrip is the number of triplets of galaxies that form a given triangle configuration within the bin
width. The function∆ijk(r, q, ψ) is the selection function for triplets: it is unity if the three points with indicesi, j andk are in the triangle
configuration and zero otherwise. In the weak lensing limit,the observed convergence field can be expressed as the sum of the lensing
signal and the noise contamination due to intrinsic ellipticities:κ = κlens + nǫ. The expectation value of the estimator above is obtained by
averaging over source ellipticities and performing an ensemble average of the convergence field, denoted by〈· · ·〉. We will use the notation
〈ζest

κ 〉 ≡ ζκ.
The covariance of the convergence 3PCF is defined as

Cov[ζκ, ζ
′
κ] = 〈(ζest

κ − ζκ)(ζest′
κ − ζ′κ)〉 = 〈ζest

κ ζest′
κ 〉 − ζκζ

′
κ. (39)

where we have simplified the notation so thatζκ andζ′κ denoteζκ(r, q, ψ) andζκ(r′, q′, ψ′), respectively. Similarly as done in Schneider et
al. (2002b), the first term on the r.h.s. of the above equationcan be rewritten as

〈ζest
κ ζest′

κ 〉 =
1

Ntrip(r, q, ψ)Ntrip(r′, q′, ψ′)

∑

ijkabc

∆ijk(r, q, ψ)∆abc(r
′, q′, ψ′)〈κiκjκkκaκbκc〉. (40)

The covariance estimate thus requires an evaluation of the 6-point correlation function of the observed convergence field. If the noise field
and the convergence field are statistically uncorrelated, the 6-point correlation function can be expressed as

〈κiκjκkκaκbκc〉 ≈ σ6
ǫ (δiaδjbδkc + 5 perm.) + [ξκ(θij)ξκ(θka)ξκ(θbc) + 14 perm.] , (41)

whereσǫ is the rms of the intrinsic ellipticities9 and we have ignored terms ofO(σ4
ǫ ξκ) andO(σ2

ǫ ξ
2
κ), which are relevant only in the transition

regime between those in which the first or second term on the r.h.s of equation (41) dominate. In addition, the second term ignores the non-
Gaussian contribution that is due to the connected parts of the three-, four- and six-point correlation functions, and thus underestimates the
sample variance. For a more conservative estimate of the non-Gaussian contribution, one might replace the connected parts of the three-,
four- and six-point functions with their unconnected parts, providing 〈κcs

i · · ·κcs
c 〉 = 8 [ξκ(θij)ξκ(θka)ξκ(θbc) + 14 perms.]. However,

in this paper we use the above equation for simplicity. This is likely to be a good approximation for two reasons. One, our estimates are
consistent with the results from simulations which containthe full non-Gaussian contribution, as shown in Figure 15. Moreover the shot
noise contribution dominates the covariance on sub-arcminute scales, which provide the main constraints on halo profiles.

Inserting equation (41) into equation (40) and performing an ensemble average over source galaxy positions yields

Cov[ζ(r, q, ψ), ζ(r′, q′, ψ′)] = [∆ζN(r, q, ψ)]2 δ({r, q, ψ} − {r′, q′, ψ′}) + R(r, q, ψ, r′, q′, ψ′), (42)

with

∆ζN(r, q, ψ) ≡ σ3
ǫ

√

Ntrip

= 2.40 × 10−7
(

σe

0.4

)3
(

Ωs

103 deg2

)−1/2
(

ng

102 arcmin−2

)−3/2

×
(

r

1′

)−1 (

∆ln r

0.1

)−1/2 (

q

1′

)−1 (

∆ ln q

0.1

)−1/2
(

∆ψ/π

0.2

)−1/2

, (43)

R(r, q, ψ, r′, q′, ψ′) ≡ 1

2πΩs

∫ smax

0

sds

∫ 2π

0

dϕr

∫ 2π

0

dϕ′
r

[

ξ(r)ξ(s − r − q)ξ(q′) + 14 perms.
]

(s, ϕr, ϕ
′
r; r, q, ψ, r

′, q′, ψ′), (44)

whereΩs andng are the survey area and the number density of source galaxies, respectively, and∆r, ∆q and∆ψ denote the bin widths
for the three parameters(r, q, ψ) that specify the triangle configuration. The notation used in equation (44) issmax =

√

Ωs/π, r =
r(cosϕr, sinϕr), q = q(− cos(ψ − ϕr), sin(ψ − ϕr)) and so on. We have assumed that the survey geometry does not affect covariance
estimation – a good approximation as long as we consider sufficiently small scales compared to the survey size. The first term on the r.h.s of
equation (42) denotes the shot noise contribution due to theintrinsic ellipticities, where the functionδ({r, q, ψ} − {r′, q′, ψ′}) is defined to
be unity ifr = r′, q = q′ andψ = ψ′ within the bin widths, and zero otherwise. The derivation ofthis term requires an estimate of the triplet

9 Van Waerbeke (2000) discussed a more accurate description of the noise field for the convergence, taking into account thesmoothing kernel used for the
reconstruction.
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Figure 15.Error estimates for measurements of the convergence 2PCF (left panel) and 3PCF (right panel) for theΛCDM model. The error estimate includes
both the shot noise due to intrinsic ellipticities, with rmsσǫ = 0.4, and sample variance. Two cases for survey areaΩs and number density of source galaxies
ng are shown. For(Ωs, ng) = (1000 deg2, 100 arcmin−2), the dotted and dot-dashed curves show the shot noise contribution and the sample variance
separately: shot-noise dominates on sub-arcminute scales. The solid curve shows the halo model prediction for the 2PCFor the 3PCF. The triangular symbols
show the sample variance estimated from simulations forΩs = 1000.

number for a given triangle configuration, which we estimateasNtrip = ngΩs × ngπr(∆r) × ngq(∆q)(∆ψ), where the first, second and
third factors denote the number of galaxies at the vertices,1, 2 and 3, respectively (see§4.3). The second termR in equation (42) denotes
the sample variance. Several interesting points made by Schneider et al. (2002b) for the 2PCF hold for the convergence 3PCF as well. (1) All
the terms are proportional toΩ−1

s , and therefore the relative contribution of the terms is independent of survey area, if the area is sufficiently
large. (2) The sample varianceR does not depend on the survey particulars such asng andσǫ. Further,R is independent of the bin widths.
This implies that combining the 3PCFs in different bins cannot reduce the sample variance. This is indeed verified by ray-tracing simulations.
(3) The off-diagonal components of the covariance arise only from the sample varianceR.

To compute the sample varianceR for a given cosmological model using equation (42), we first make a table of the model predictions
of the convergence 2PCF as a function of the separation angle. Then, we can use the same table to compute the sample variance between the
two convergence 3PCFs ofany triangle configurations. Therefore, this method is much more tractable than a direct implementation including
contributions from the three-, four- and six-point functions, where we have to account for their configuration dependences in the integration
of equation (44). An alternative way to estimate the covariance is to use ray-tracing simulations. However, to do this rigorously requires an
adequate number of independent realizations, since samplevariance is large for the higher-order moments. The PTHalosmethod recently
proposed by Scoccimarro & Sheth (2002) can be a powerful toolfor such an approach.

Likewise, we can derive the covariance of the convergence 2PCF as

Cov[ξ(r), ξ(r′)] = [∆ξN(r)]2δ(r − r′) + R2pt(r, r
′) (45)

with

∆ξN ≡ σ2
ǫ

√

Npair

= 1.5 × 10−6
(

σe

0.4

)2
(

Ωs

103 deg2

)−1/2
(

ng

102 arcmin−2

)−1 (

r

1′

)−1 (

∆ ln r

0.1

)−1/2

, (46)

R2pt(r, r
′) ≡ 1

2πΩs

∫ smax

0

sds

∫ 2π

0

dϕr

∫ 2π

0

dϕ′
r

[

ξ(s)ξ(|s + r
′ − r|) + ξ(|s + r

′|)ξ(|s − r|)
]

, (47)

where the number of pairs are estimated asNpair = ngΩs × ngπr(∆r).
Figure 15 plots the square root of the diagonal component of the covariance matrix for the convergence 2PCF (left panel) and 3PCF

(right panel) for theΛCDM model. This is an estimate of the error on the 2PCF and 3PCFmeasurements from a lensing survey. We consider
two cases, specified by the survey areaΩs and the number density of source galaxiesng . The dashed and broken curves show the results
for (Ωs, ng) = (1000, 100) and(200, 40) in units of degree2 andarcmin−2, respectively. The former is expected from future imaging
survey, while the latter applies for a survey like the CFHT Legacy Survey, which has just begun. For(Ωs, ng) = (1000, 100), the dotted and
dot-dashed curves show the shot noise contamination and thesample variance separately, implying that the shot noise provides the dominant
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contribution at small scales<∼ 1′. The triangle symbols denotes the simulation results for the sample variance forΩs = 1000 degree2. Note
that the simulation result is computed from 36 realizationsof a 11.7 degree2 simulated map, and is then scaled as∝ Ω

−1/2
s . Out analytic

estimates are consistent with the simulation results, within the rather large error bars of the latter (not plotted to preserve clarity).
The solid curve in each panel of Figure 15 shows the halo modelprediction for the 2PCF or the 3PCF. Comparing the solid curves with

the error estimate gives the signal-to-noise (S/N ) ratio for measuring the 2PCF and 3PCF. Clearly these surveyparameters will allow for
measurements of shear correlations at high significance, even on sub-arcminute scales. We note that theS/N estimate for the 3PCF is only
for one triangle configuration – we can combine the 3PCFs fromdifferent configurations to improve theS/N at these scales.

5.3 Constraints onα and c0

Next we apply the covariances computed above to demonstratehow combined measurements of the 2PCF and 3PCF can be used to constrain
parameters of the halo profile. We use the standardχ2 statistic, expressed for our case as:

χ2 = χ2
2pt + χ2

3pt, (48)

where

χ2
2pt ≡

∑

i≤j

(ξ̂i − ξi)[Cov(ξ)]−1
ij (ξ̂j − ξj),

χ2
3pt ≡

∑

i≤j

(ζ̂i − ζi)[Cov(ζ)]−1
ij (ζ̂j − ζj), (49)

whereξ̂ andζ̂ denote the 2PCF and 3PCF for the fiducial model and[Cov]−1
ij denotes the inverse of the covariance matrix. The indexi runs

among different bins forξ andζ. In equation (48), we have ignored the covariance between the 2PCF and 3PCF for simplicity. We make this
approximation because only the sample variance contributes to this covariance (the shot noise contribution vanishes as it involves the fifth
power of the intrinsic ellipticities), which is small on sub-arcminute scales as discussed above.

So far we have used the parametersr, q andψ to describe triangle configurations. To perform theχ2 fitting we employ an alternative
set of parameters used in the literature (e.g., Peebles 1980):

r ≡ θ12, u ≡ θ23
θ12

, v ≡ θ31 − θ23
θ12

, (50)

with the conditionθ12 ≤ θ23 ≤ θ31, which imposes the constraintsu ≥ 1 and0 ≤ v ≤ 1. Different sets ofr, u andv correspond to different
triangles, so we do not have to worry about double-counting.

We treat the inner slope parameterα and the halo concentration normalizationc0 as free parameters. We fixβ = 0.13 (the mass
dependence of the concentration) and we set the other model parameters to be those for theΛCDM model. We discuss below why this choice
is a good first attempt at the use of correlation statistics tomeasure halo profiles. As shown in Figure 13, these profile parameters are sensitive
to the lensing statistics at small scales<∼ 2′. We therefore restrict ourselves to these scales. We consider 10 logarithmic bins inr = [0.′12, 2′]
with the bin width∆r/r = 0.1. For the 3PCF, we consider 5 bins each foru andv: u = 1, 2, 3, 4, 5 andv = 0.1, 0.3, 0.5, 0.7, 0.9. Thus
we use 10 bins for the 2PCFs and 250 for the 3PCF. How the binning affects the fitting of model parameters must be carefully examined,
to avoid over- or under-estimating the constraints (e.g, Scoccimarro & Frieman 1999). Since we correctly take into account the covariance
for the 2PCF and 3PCF, including the off-diagonal components, we avoid over-constraining the parameters. The triplet number used for the
shot noise evaluation is estimated for the binning we consider asNtrip = n3

gΩs × πr∆r × qr∆u∆v with ∆u = 1 and∆v = 0.2. To save
computational expense for the sample variance of the 3PCF, we ignore the dependence on thev parameter – we compute the sample variance
for different bins ofr andu, but withv = 0.5 fixed, resulting in50 × 50 computations for the sample variance. This is adequate, since the
configuration dependence is weak as shown in Figure 8.

Figure 16 shows contour plots of the constraints on the innerslope parameterα and the halo concentrationc0. We considerΩs = 200
degree2 andng = 40 arcmin−2 for the survey area and the number density of source galaxies, respectively. The left panel shows the
constraints if we use the measurement of the 2PCF only, whilethe right panel shows the constraints from combined measurements of the 2PCF
and the 3PCF. The cross symbol denotes our fiducial model of(α, c0) = (1, 9), which is the NFW profile with the concentration given by
Bullock et al. (2001). For a Gaussian probability distribution function for the 2PCF and 3PCF, the three shaded regions correspond to∆χ2 =
2.30, 6.17 and11.8 corresponding to68.3%, 95.4% and99.73% confidence levels (C.L.), respectively. One can see that theconstraints
on α and c0 are degenerate: the effect of increasing (decreasing)α on the 2PCF and 3PCF is compensated by decreasing (increasing)
c0. Nevertheless, the right panel shows that the 3PCF measurement can tighten the constraints, implying that the 3PCF provides additional
information on these parameters, although the parameter degeneracy is not broken. As a result, this type of survey can beused to put stringent
constraints onα andc0 within 5% level (95% C.L.), if one of the parameters is fixed, and systematic uncertainties in the measurements and
the theoretical model do not dominate.

Figure 17 shows the result expected from a different type of survey from the one in the previous figure: a deep, small area survey, with
(Ωs, ng) = (20, 100). For this case, the 3PCF can substantially tighten the constraints provided from the 2PCF. However, the degeneracy
betweenα andc0 remains. Recently, Takada & Hamana (2003) proposed that a joint measurement of the magnification statistics and the
cosmic shear could be used to break the degeneracy or at leastput upper bounds onα andc0, since the amplitude of the magnification
correlation is more sensitive to an increase ofα andc0 than the cosmic shear correlation. This arises from the non-linear relation between
the magnification and shear, given byµ = |(1 − κ)2 − γ2|−1.
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Figure 16. Contour plots of the constraints on the inner slope parameter α and the halo concentrationc0 expected from a survey with areaΩs = 200
degree2 andng = 40 arcmin−2 . The left panel shows the result if we use only the 2PCF measurement, while the right panel shows the result from
combined measurements of the 2PCF and 3PCF. The cross symboldenotes input fiducial model of(α, c0) = (1.0, 9.0). To perform the fitting, we have
used measurements on scales[0.′2, 2′] and combined250 triangle configurations for the 3PCF (see text for details).The three shaded regions represent
∆χ2 = 2.30(68.3%), 6.17(95.4%) and11.8(99.7%), respectively. The 3PCF measurement can tighten the constraints, reflecting the fact that it carries
lensing information complementary to the 2PCF.

6 DISCUSSION

In this paper, we have developed the halo model for computingthe higher order correlations of the cosmic shear field, extending the real-space
dark matter halo approach developed in TJ03b. A detailed investigation of the three-point correlation functions (3PCF) of the convergence and
shear fields with respect to the size and configuration dependence of triangles has been presented. Our method provides anaccurate, analytical
way of computing the 3PCFs with little computational expense. We have focused on the eight shear 3PCFs defined from combination of the
+/× projections of the shear fields at each vertex of a given triangle (SL03, ZS03 and TJ03a). The shear 3PCFs defined in this wayhave
characteristic properties that help disentangle the lensingE-mode from the theB-mode due to possible systematic errors and other non-linear
effects (see§3). They are a direct probe of the gravitational clustering of the mass distribution and can provide an independent test of the
CDM paradigm of structure formation.

We have carefully checked the accuracy of our model by comparing the predictions with ray-tracing simulation results. We paid par-
ticular attention to the triangle configuration dependences of the 3PCFs, since our halo model uses simple spherically symmetric profiles.
We find excellent agreement over the angular scales and models we have considered, as shown in Figures 5-12. The halo modelreproduces
the complex configuration dependences for the eight shear 3PCFs, as well as their amplitudes. The agreement is found for plausible model
ingredients: mass function (Sheth & Tormen 1999) and NFW halo profiles with recent prescriptions for the halo concentration (Bullock et al.
2001). We chose the best parameter values identified in the literature and did not adjust any parameters.

On scales>∼ 1′ the 3PCF can be used to break degeneracies in cosmological parameters, in particular in theσ8-Ωm0 determinations so
far made from the 2PCF measurement. Figures 6-12 show a cleardependence of the lensing 3PCFs on the cosmological models.In addition,
on large scales the 3PCF can constrain primordial non-Gaussianity, which can be separated from the gravitationally induced signal using its
dependence on scale (R. Scoccimarro, private communication). In practice, measuring the shear 3PCFs is more feasible than the convergence
3PCF, since obtaining the convergence requires a non-localreconstruction from the observed shear field. Detections ofshear three-point
moments have recently been reported (Bernardeau et al. 2002a; Pen et al. 2003). Thus, current survey data are likely to already allow for
shear 3PCF measurements (see Figure 15 and Figure 4 in TJ03a for theoretical justification). Our method provides the onlywell-tested
analytical approach to interpret the measured signals in terms of cosmological parameters.

A second application we have proposed is to use shear statistics on sub-arcminute scales to constrain halo profile properties. Forthcoming
lensing surveys promise to measure the sub-arcminute signals with high significance (see Figure 15; also see Figures 17 and 18 in Van
Waerbeke et al. 2001b for a measurement of the shear 2PCFs). This will open a new window in the use of shear correlation functions, beyond
the determination of cosmological parameters. Then-point correlation functions on sub-arcminute scales arise mainly from correlations
between the lensing fields around a single halo ofM > 1013M⊙ (see Figure 14). The halo model allows us to interpret the measured
signals in terms of the halo profile properties. The inner slope of the generalized NFW profile and the halo concentration are sensitive to the
amplitudes of the lensing 2PCF and 3PCF on these scales (see Figure 13).

We have demonstrated how combined measurements of the 2PCF and 3PCF can put stringent constraints on halo profile properties
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Figure 17.As in the previous figure, but for a survey withΩs = 20 degree2 andng = 100 arcmin−2 . The results show the value of increased number density
of galaxies that can be achieved with a deeper survey. For such a survey the 3PCF provides a much larger improvement in the constraints.

from forthcoming lensing data. This was done by taking into account the covariance for the 2PCF and 3PCF measurements, which contains
contributions from the shot noise due to the intrinsic ellipticities and sample variance. For example, Figure 16 shows that a survey with
parameters similar to those of the CFHT Legacy survey can constrain the inner slope parameter with5% accuracy (95% C.L.) if the halo
concentration is fixed. Figure 17 shows the dramatic improvements possible with a deeper survey; on the basis of these figures, it follows
that a deep survey with area>∼ 200 square degrees and source number density∼ 100 per square arcminutes can achieve an accuracy of1%
in density profile parameters. The use of the 3PCF is criticalin being able to achieve this accuracy, and the use of the four-point function
would also be valuable if it could be measured. In this paper we have ignored the effect of uncertainties in the mass function and its possible
degeneracy with the inner slope and concentration. White (2002) suggested adjustments to the parameters in the Sheth-Tormen mass function
from fitting to simulations. We confirmed that this modification alters the halo model predictions for lensing correlations over angular scales
( <∼ 5′) where the 1-halo term is relevant. Therefore, measuring the lensing 2PCF and 3PCF can be similarly used to constrain theshape of
halo mass function over a mass range of1013 − 1015M⊙. This would be complementary to other methods such as cluster counts. Breaking
the degeneracy in the halo model parameters will require either using the different 3PCFs of the shear, which we have not done here, or input
from other methods such as the convergence reconstruction approach discussed below, or a statistical study of strong lensing,X-ray and SZ
effect on cluster/group scales. These are important issuesto be addressed.

A fundamental result from CDM simulations is that the density profiles of halos are universal across a wide range of mass scales (e.g.,
NFW). Therefore, applying our method to different length scales would sample halo profiles on different mass scales and offer a powerful test
of the CDM paradigm. The halo model formalism can also be extended to include the effects of substructure, currently a subject of study due
to a possible conflict between CDM theory and observations (e.g. Sheth & Jain 2002; Dalal & Kochanek 2002). Substructure and triaxiality
of halos, discussed further below, would increase the amplitude of correlation functions on the smallest scales. Sincethe two-, three-, and
four-point functions scale differently with these effects, a careful study is merited to develop the correlation function approach as a probe
of different small scale effects. Using lensing correlations on scales of0.1 − 2 arcminutes, halos with masses of1013 −M15M⊙ will be
probed.

The method of constraining halo profile properties from shear correlations is complementary to the approaches of Reblinsky & Bartel-
mann (1999), Dahle, Hannested & Sommer-Larsen (2003), White et al. (2002), Miyazaki et al. (2002) and Padmanabhan et al.(2003). They
rely on the reconstruction of the convergence field from observed ellipticities (see Dahle et al. 2003 and Miyazaki et al.2002 for the imple-
mentation to actual data). Halo profiles are constrained by looking at convergence profiles around individual peaks in the convergence map.
However, there are some limitations to this method. The firstis lensing projection effects – we cannot accurately measure properties of the
primary halo due to superposition with a void region or less massive halos along the same line of sight, even if the redshift of the lens halo is
available (White et al. 2002; Padmanabhan et al. 2003). The other limitation is the angular resolution of the convergence reconstruction. In
practice, reconstructing the convergence field on a given patch of the sky requires an averaging of the observed ellipticities over an adequate
number of source galaxies to reduce the noise contaminationas well as enhance the contrast of the signals arising from halos. For plausible
survey parameters the reconstruction resolution is largerthan an arcminute. The reconstructed convergence around a halo is thus smoothed,
which makes it difficult to see the inner region in the halo profile. Padmanabhan et al. (2003) concluded that the inner slope of NFW profiles
cannot be constrained using convergence maps.

The resolution limitation of convergence maps can be offsetby stacking clusters and by follow-up deeper weak lensing observations
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and other methods such as the SZ effect,X-ray observations and strong lensing. It is not an easy task however, and is subject to biases
associated with identifying centers and mass scales with peaks. The strength of the correlation function method we havediscussed is that it
allows for constraints on the inner halo profile statistically, even though individual halos are not resolved on these scales. Our approach treats
the data objectively, while taking a parameterized approach to the modeling. This appears a sensible approach at a time when cosmological
parameters are well constrained and we have a broad understanding of halo properties.

The real-space halo model formulation, developed in TJ03b and this paper, does not rely on a model of the 3D non-linear power
spectrum. This fact leads to interesting applications for lensing statistics. We can directly compute anyn-point correlation functions of
lensing observables, such as the reduced shear fieldg = γ/(1−κ) and the lensing magnificationµ = 1/[(1−κ)2 +γ2] (Takada & Hamana
2003). This can be done merely by replacingγM in equation (20) withgM or µM for a given halo of massM , respectively. The resulting
prediction is exact in the sense that it fully accounts for the non-linear contribution of lensing. So far, the cosmological interpretation of
lensing two-point statistics has been made using theoretical predictions computed from a model of the 3D power spectrum, which requires
a perturbative approach, such as settingg ≈ γ or µ ≈ 1 + 2κ (e.g., Van Waerbeke et al. 2001b; McKay et al. 2001; Guzik & Seljak 2002;
Benitez & Martinez-Gonzalez 1997; Gaztañaga 2003).

There are some uncertainties we have ignored in the halo model formulation. We have employed a spherically symmetric halo profile,
while CDM simulations show that halos are triaxial (Jing & Suto 2002). In addition, high-resolution simulations have also shown that about
10% of mass distribution in a halo is in small sub-clumps (e.g, Ghigna et al. 2000). We have shown that the halo model computed from the
NFW profile matches the simulation results for all the lensing statistics we have considered. However, it is unclear whether this agreement
holds on sub-arcminute scales. The 3PCF can be the lowest order statistical quantity to probe the detailed mass distribution of halos via
its dependence on triangle configurations. Substructure and triaxiality are expected to have different scale and configuration dependences
than changes to the halo parameters that we have considered.It is an interesting problem for future work to work out in detail the different
effects that emerge on scales of order∼ 0.1 arcminute. For the applications described above, it is important to test the analytical predictions
with ray-tracing simulation with higher resolution. This is a pressing need and a challenge for future numerical work. The PTHalos method
developed by Scoccimarro & Sheth (2002) could be a powerful alternate tool for such a study.

We would like to thank T. Hamana for kindly providing his ray-tracing simulation data and for discussions. We also thank R. Scocci-
marro, R. Sheth, M. Jarvis and G. Bernstein for valuable comments and discussions and thank P. Schneider for valuable discussions on the
parity transformation properties of the shear three-pointfunctions. This work is supported by NASA grants NAG5-10923, NAG5-10924 and
a Keck foundation grant.

APPENDIX A: VALIDITY OF THE REAL-SPACE HALO APPROACH FOR SHE AR STATISTICS

In this appendix, we address the validity of the real-space halo model developed in§2.4.
Figure A1 plots the shear 2PCF,ξγ(θ) = 〈γ · γ∗〉, against separation angleθ for the ΛCDM model and source redshiftzs = 1.

The thick dashed and dotted curves are the real-space and Fourier-space halo model predictions for the 1-halo term, which are computed
using equations (20) and (24), respectively. Note that we have used the NFW profile. There is excellent agreement over theangular scales
we have considered, verifying that the real-space model formulated in§2 is equivalent to the Fourier-space model. This agreement is quite
encouraging, since the real-space halo model for the shear field contains an infinite integration range to account for thenon-local property of
the shear fields. To more explicitly demonstrate the importance of the integration range, the thin dashed curve is the real-space halo model
prediction when the integration range

∫

d2s is confined to the virial region, as is done for the convergence field (see equations (19)). It
significantly underestimates the 1-halo term. Figure 3 in TJ03b also demonstrates that the real-space halo model for theconvergence field is
equivalent to the Fourier-space halo model. These results lead us to conclude that the real-space halo model formulation for the shear and
convergence fields has been made in a self-consistent way, inagreement with the Fourier-space model well studied in the literature (e.g.,
Cooray & Sheth 2002).

The thin dotted curve denotes the 2-halo term, which provides the dominant contribution to the 2PCF forθ >∼ 4′. For comparison, the
thin solid curve is the result forξγ computed from the linear mass power spectrum. It very slightly overestimates the 2-halo term which
includes the biasing of halos. The 2-halo term thus capturesthe clustering properties in the linear regime.

The accuracy of the halo model for predicting the lensing 2PCFs can be seen by comparing the dot-dashed and thick solid curves (the
detailed comparison with ray-tracing simulation results will be presented below). The dot-dashed curve shows the total halo model prediction
(1- plus 2-halo terms), while the thick solid curve is the result computed from the fitting formula proposed in Smith et al.(2002) (hereafter
Smith02). The Smith02 formula was calibrated to reproduce the non-linear mass power spectra from high resolutionN -body simulations
for various cosmological models. As can be seen, the halo model prediction matches the Smith02 result within10% at 0.′1 ≤ θ ≤ 30′. The
reliable range of the Smith02 formula, isk <∼ 10 hMpc−1 in the mass power spectrum. Since the lensing field is the projected field of the 3D
mass distribution, the valid range roughly corresponds to the angular scaleθ >∼ 2π/[kmaxdA(z = 0.4)] ≈ 0′.6, wherez = 0.4 is close to the
peak redshift of the lensing projection function for the source redshiftzs = 1 (e.g., see Figure 4 in TJ02). Therefore, it is unclear whether or
not the discrepancy between the halo model and the Smith02 result atθ <∼ 0.′1 is genuine.

It is worth mentioning why we use the fiducial model(c0, β) = (9, 0.13) for the halo concentration in this paper, since we used a
steeper mass slopeβ = 0.2 in TJ02 and TJ03b. The Smith02 formula predicts a steeperk slope of the non-linear power spectrumP (k) than
predicted from the fitting formula of Peacock & Dodds (1996) (hereafter PD), which has been widely used in the literature.10 For the halo
model, thek-slope is determined by the halo profile parameters, the slope of the mass function, and the input linear power spectrum (Seljak

10 The PD formula is based in part on the physically motivatedstable clustering hypothesis, which allows one to analytically predict the behavior of strongly
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Figure A1. The two-point correlation function of the shear field,ξγ(θ) = 〈γ · γ∗〉, vs. separation angleθ. The thick dashed curve shows the real-space halo
model prediction for the 1-halo term, computed using equation (20), while the thick dotted curve shows the Fourier-space halo model prediction. The sum with
the 2-halo term, denoted by the thin dotted curve, leads to the halo model prediction for the total power (1h+2h terms) shown by the dot-dashed curve. For
comparison, the thick and thin solid curves show the predictions computed from the Smith02 fitting formula for the non-linear mass power spectrum and the
linear power spectrum, respectively. The thin dashed curveis the real-space halo model prediction when the integration range is confined to the virial radius.

2000; Ma & Fry 2000a,b,c; TJ03b). The halo model withβ = 0.13 gives a slightly better fit to thek-slope of the Smith02 power spectrum
than withβ = 0.2. It is reassuring that we find agreement with N-body simulations with plausible ingredients for the halo model, each of
which is supported by independent studies: the halo profile (NFW), the halo concentration (Bullock et al. 2001) and the halo mass function
(Sheth & Tormen 1999). These studies explored halo properties by resimulating regions containing halos in a larger scale simulation with a
higher resolution simulation. Hence, one advantage of the halo model is that it can be easily refined by incorporating results from different
N -body simulations with different sizes.

Figure A2 compares the theoretical predictions forξγ,+(θ) (left panel) andξ×(θ) (right panel), as done in the previous figure. The
real-space halo model result for the 1-halo term (thick dashed curve) again agrees with the Fourier-space result (thickdotted curve) for both
ξγ,+ andξγ,×. The agreement is as a result of the integration of the phase factorsǫµǫν in equation (21) for the real-space case. Comparison
of the dot-dashed curve with the solid curve in each panel shows that the halo model prediction for the total 2PCF matches the Smith02
result. Note that, although the 2-halo term (or the linear theory prediction) forξγ,× overestimates the amplitude at large scalesθ >∼ 5′, the
agreement of the halo model with the Smith02 result at these scales results from sum of the negative 1-halo term plus the 2-halo term.

Figure A3 compares theoretical predictions forξγ from various models of non-linear gravitational clustering. The thick solid, dashed
and dot-dashed curves are the results from the Smith02 formula, the PD formula and the halo model, respectively. The lower panel shows
the deviation relative to the Smith02 result (thick solid curve) and shows agreement among these models within 10% over the scales we have
considered. The Smith02 prediction is higher than PD by0−10% at1 ≤ θ ≤ 10′. This discrepancy also exists for the aperture mass variance
(Schneider et al. 1998), which has been used to disentangle theE/B-modes from the actual measurement (e.g, Van Waerbeke et al.2001b;
Jarvis et al. 2003). Most of the cosmic shear analysis to constrain cosmological models has been made by comparing the measured signals
with the theoretical predictions computed from the PD formula. Hence, the discrepancy shown implies thatσ8 might be overestimated by up
to∼ 5%, if the constraint is obtained fromθ < 10′. On the other hand, the halo model slightly overestimates the Smith02 and PD results on
θ > 10′, where the 2-halo term yields the dominant contribution. This is because the standard implementation of the halo model imposes the
condition that the 2-halo term reproduce the shear 2PCF computed from thelinear power spectrum on large scales – this cannot reproduce
the suppression seen in the realistic non-linear power spectrum over the transition scales between the non-linear and linear regimes. Finally,
the sensitivity of the Smith02 result to the input linear power spectrum is shown by the thin solid curve, which uses the transfer function
proposed in Eisenstein & Hu (1999), which is more accurate than the BBKS plus Sugiyama model. The comparison shows a difference less

non-linear clustering. The Smith02 results display a weak violation of the stable clustering hypothesis. This violation can occur for the halo model as well (Ma
& Fry 2000b,c; also see Scoccimarro et al. 2001; TJ03b).
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Figure A2. The two-point correlation functions of the shear fields,ξγ,+ (left panel) andξγ,× (right panel), as in Figure A1. Although the 2-halo term for
ξγ,× overestimates the amplitude at large scalesθ >

∼ 5′, the halo model reproduces the Smith02 result because the 1-halo term is negative.

Figure A3. Comparison of model predictions forξγ . The solid, dashed and dot-dashed curves are the results from the Smith02 formula, the PD formula and
the halo model, respectively. The lower panel explicitly shows the deviation of each model prediction from the Smith02 model. Although all the results agree
with each other within10%, the Smith02 result forξγ is higher than the PD result by0 − 10% at0′.1 <

∼ θ <
∼ 10′ (see text for details). Note that the Smith02

result is computed using the BBKS transfer function. To demonstrate the effect of the input linear power spectrum, the thin solid curve is the Smith02 result
when we use the fitting formula of Eisenstein & Hu (1999), which is more accurate.
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Figure A4. The figure shows how the halo boundary condition employed in the halo model calculation affects the prediction forξγ . The thick dot-dashed and
dashed curves are the results when we employ the NFW profile truncated at the virial radius and at the radiusr180 , respectively. The radiusr180 is defined
so that mean density enclosed by a sphere with radiusr180 is 180 times the background density. The upper dotted curve shows the halo model prediction if
one uses the expression in Bartelmann (1996) for the shear profile to compute the 1-halo term. For reference, the thin solid curve shows the Smith02 result in
Figure A1.

than3%. This sensitivity also holds for the halo model prediction.Hence, we can safely use the BBKS plus Sugiyama model to compute the
halo model predictions.

Figure A4 explores how a modification of the halo boundary condition used in the halo model calculation affects the model prediction.
As stated below equation (6), the Sheth-Tormen mass function (6) tends to better fit the mass function measured fromN -body simulations,
if one employs the halo mass estimator,M180, enclosed within a region of the overdensity∆180(= 180), than the virial mass estimator (e.g.,
White 2002). Therefore, one possible modification of the halo model is to employ the halo profile truncated at the radiusr180

11. If we assume
that the mass distribution in a halo follows an NFW profile up to r180, we can obtain the relation betweenM andM180, which allows us to
re-express all the relevant quantities in terms of the new massM180, as demonstrated in Hu & Kravtsov (2003). In addition, for consistency
with the simulation results in White (2002), we employ the parameters ofa = 0.67 andp = 0.3 for the Sheth-Tormen mass function (6) in
the halo model calculation (see Table 2 in White 2002). The thick dashed curve plots the halo model prediction forξγ for the halo boundary
r180, while the thick dot-dashed curve is the result for the virial boundary. As can be seen, the two results are close, although the halo model
of r180 better matches the Smith02 result denoted by the thin solid curve over a range of the scale0.′5 <∼ θ <∼ 5′. This is mainly due to the
enhancement of the 1-halo term in the halo model withr180, sincer180 > rvir (∆v = 334 > 180) for theΛCDM model, hence the 1-halo
term covers a larger range than the virial region. The dottedcurve shows the halo model result when one employs the expression for the shear
profile γM in Bartelmann (1996) to compute the 1-halo term. The expression is derived by the line-of-sight projection of the NFW profile,
allowing it to extend to infinite radius. It substantially overestimates the amplitude forξγ over the scales we have considered. Hence, if one
intends to account for the mass contribution outside the virial region, it is necessary to first modify the mass defined within the new halo
boundary and then to modify the halo model ingredients in terms of the new halo mass. This could improve the halo model accuracy over the
transition scales between the non-linear and linear regimes, since the mass distribution outside the virial region is relevant for the quasi-linear
regime (δ ∼ 1; also see the discussions around Figure 8 in TJ03b). We have confirmed that the boundary conditionr180 slightly improves
the agreement between the halo model prediction for the lensing 3PCFs and the simulation results. However, in this paper, we implement the
virial boundary for simplicity.

To summarize the results shown in Figures A1-A2, we have shown that our real-space halo model formulation for cosmic shear statistics
is self-consistent with the Fourier-space halo model. A great advantage of the real-space halo model is that it enables us to analytically
compute anyn-point correlation functions for both the convergence and shear fields on small angular scales, without additional computational
effort compared to the two-point function.

11 Note that, as long as the halo mass function is then considered a function ofM180, mass conservation and the normalization of the mass function are not
violated
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APPENDIX B: CONVERGENCE FIELD FOR A GENERALIZED NFW PROFILE

In this appendix, we present the convergence field around a generalized NFW profile withα 6= 1 given in equation (10).
For generalα the convergence field cannot be analytically computed. However, if α = 0 and1, we obtain analytical expressions to

evaluateκM in equation (13) in terms ofΣM , which is given by

ΣM (θ) =
Mc2f0
2πr2vir

F (cθ/θvir), (B1)

with

F (x) =
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for α = 0 and

ΣM (θ) =
Mc2f2
2πr2vir

F (cθ/θvir), (B3)

with
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(B4)

for α = 2, respectively. The factorsf0 andf2 in the above equations aref−1
0 = −c(2 + 3c)/(2(1 + c)2) + ln(1+ c) andf−1

2 = ln(1 + c).
We again note that the convergence fields above are defined from the generalized NFW profile truncated at the virial radius,leading to
ΣM (θ) = 0 for θ > θvir. These expressions are used to address the sensitivity of the lensing statistics to the inner slope parameterα.
Similarly, we can derive analytical expressions for the shear profiles forα = 0 and2, as in equation (16).
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